
CLASS NOTES 1: FUNDAMENTALS OF ERROR CORRECTION CODING

Introduction to Information and Coding Theory

Suayb S. Arslan

This short note introduces some of the basic concepts of Information and coding theory.
Once the concepts are defined, some asymptotical bounds on the straightforward code con-
structions are presented without worrying about the encoding and decoding procedures and
their implementation complexity.

1 TRANSMISSION SYSTEMS

Transmission is the act of the process of sending out electronic signals such as radio sig-
nals, or messages in some form so that a receiver can receive information and reconstruct the
message in an appropriate location or time. In its most conventional form, for example, radio
signals sent out over mobile networks is an example of transmission process in space. Storing
information in an appropriate storage media is an example of transmission in time. In either
way, a way of communication is realized. One of the fundamental problems of such com-
munication idea is the required reliability. Because of this stringent requirement, modern
communication and storage systems rely heavily on powerful channel coding methodolo-
gies.

In order to realize channel codes that have got good error detection and correction ca-
pabilities, we need to go through the theoretical development stages of coding. Such con-
struction methodologies should also pave the way for efficient implementation strategies.
For this, a brand new era of mathematical discipline has been commenced with Shannon’s
seminal work on what is now called the "Information theory". This theory establishes the
limits of communication that allow originating a message and its lossless reconstruction in
another point in time or space. This class is therefore concerned with information theory
fundamentals that shed interesting light to the theory of channel coding.
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Figure 1.1: Basic system diagram for a communication or a storage system.

1.1 SYSTEM DIAGRAM

A general system block diagram is shown in Fig. 1.1. A communication system consists of
three major building blocks that process the information generated at point A. Raw data first
goes through source coding, i.e., the unstructured redundancy is thrown out for saving space.
This process is also known as “compression". The compressed content then goes through
channel coding where a structured redundancy is added to the message symbols to create
some robustness against channel errors. Introduction of structure in to the “redundancy"
lends itself to an easier interpretation of the use of it at the receiver with respect to detect and
correct as many errors as possible. Based on the channel frequency response characteristics,
the modulator block generates the appropriate signal that is most suited for transmission.
The symbols transmitted across the channel are received and processed exactly in reverse
order in order to reconstruct a copy of the message at point B that is originally generated at
point A.

In his seminal work, Claude E. Shannon showed that it is theoretically possible to con-
struct an information transmission system that allow exponentially decreasing error proba-
bility in terms of message reconstruction (Shannon, 1948). The prerequisite for this was that
the information rate of the information source is smaller than the so-called channel capac-
ity. The term “capacity" will be clear after we introduce some prerequisites of information
theory. Given the statistical nature of the channel, capacity can be thought as a fixed num-
ber beyond which the information communication is no longer reliable no matter how much
clever or much redundancy is applied to the transmitted raw data. In order to reduce the
information rate, source coding is used which are implemented by the source encoder in the
transmitter and the source decoder at the receiver.

1.2 INFORMATION THEORY

In order talk about concepts like sets and their relative size, we need the idea of “measure".
For example from classical probability theory, a measure on a set is a systematic way to assign
a number to each suitable subset of that set. This can be intuitively interpreted as its size. A
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measure therefore is a generalization of the concepts of length, area, or volume. In this sense,
the idea of information is also subject to some form of “measure" to talk about its content.
According to Shannon, messages are emitted from information sources that are of random
nature. The measure of information is thus interpreted based on the statistics of the symbols
emitted by that information source.

1.2.1 ENTROPY

Entropy is the uncertainty within a given information source that emits infinite or finite
number of information symbols according to a probability distribution pX (x). More formally,
it is a measure of randomness (uncertainty) that is defined as

H(X ) =−
∫

x

(∑
x

)
pX (x) log pX (x) (1.1)

with the minor convention that 0log0 = 0. If the information source emits binary symbols
xi ∈ {0,1} for i = 1,2 with probabilities p0 and 1−p0, respectively, is given by the binary en-
tropy function

h(x) =−∑
x

pX (x) log pX (x) =−p0 log2 p0 − (1−p0) log2(1−p0) (1.2)

where it attains its maximum value of 1 when p0 = 1/2. The entropy is a concave function of
the distribution and equals zero or one as the measure of entropy must be 0 when the source
is deterministic. The significance of entropy is also realized in Shannon’s source coding the-
orem. It turns out that the entropy of a random source is a lower bound on the the average
number of symbols required to represent it without incurring any information loss.

The definition of entropy for a single random variable (single source) can easily be ex-
tended to multiple random variables X1, X2, . . . , XM and hence we have the following joint
entropy,

H(X1, . . . , HM ) =−
∫

x1

. . .
∫

xM

(∑
x1

· · ·∑
xM

)
pX1,...,XM (x1, . . . , xM ) log pX1,...,XM (x1, . . . , xM ) (1.3)

For a given two information sources X and Y with the joint probability distribution pX ,Y (x, y),
the conditional entropy is the entropy of a random variable Y conditioned on the availability
of another random variable’s (X ) knowledge and is defined as

H(Y |X ) =
∫

x

(∑
x

)
pX (x)H(Y |X = x) (1.4)

=−
∫

x

(∑
x

)
pX (x)

∫
y

(∑
y

)
pY |X (y |x) log pY |X (y |x) (1.5)

=−
∫

x

∫
y

(∑
x

∑
y

)
pX ,Y (x, y) log pY |X (y |x) (1.6)
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Figure 1.2: A binary symmetric channel with error (binary flip) probability ϵ.

The amount of reduction in the uncertainty about a random variable X due to the infor-
mation presence of another random variable Y is called mutual information. It is conven-
tionally represented by I (.) notation and given by

I (X ;Y ) = H(X )−H(X |Y ) =
∫

x

∫
y

(∑
x

∑
y

)
pX ,Y (x, y)

pX ,Y (x, y)

pX (x)pY (y)
(1.7)

Mutual information is a measure of the dependence between the two random sources
and equals zero when X and Y are mutually independent.

1.2.2 CHANNEL CAPACITY

The channel block in a typical communication system shown in Fig. 1.1 is characterized
by a conditional probability distribution pY |X (y |x) of the output Y given the input X . The
so-called capacity of the channel C is given by the maximization of the mutual information
with respect to input probability distribution pX (x). In other words,

C = max
pX (x)

I (X ;Y ) (1.8)

where the maximum is taken over all the distributions on X . If the rate of transmission is
lower than or equal to this number, the it shown (at least mathematically) that the reliable
transmission of information is possible. In other words, this significant result advocates that
as long as the rate of transmission is below a threshold (the channel capacity), a vanishingly
low probability of error is guaranteed.

Exercise 1: Consider a source X with entropy H(X ). Is a reliable communication possible
if H(X ) >C ? Comment on the implications of this inequality.

Exercise 2: Consider a source X transmitted over a binary symmetric channel (BSC) with
parameter ϵ, given in Fig. . The output of the channel is Y . Show that the capacity of this
channel is given by 1−h(ϵ).

PROOF: First observation is that BSC is one of the important discrete memoryless chan-
nels. In addition it is symmetric with respect to the input symbols. Therefore, it is relatively
easy to see the following using Equation (1.4),

H(Y |X ) =p0h(ϵ)+ (1−p0)h(ϵ) = h(ϵ) (1.9)
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where the symmetry leads to the same binary entropy function h(ϵ) whether we condition on
X = 0 or X = 1. The mutual information between X and Y is defined to be

I (Y ; X ) = H(Y )−H(Y |X ) = H(Y )−h(ϵ). (1.10)

Since this expression attains its maximum whenever H(Y ) is maximum, the capacity is
1−h(ϵ). Note that H(Y ) is maximum whenever the probability distribution pY (y) is uniformly
random. It is left to the reader to check X is uniformly distributed if and only if Y is uniformly
distributed. Thus, this completes the proof. �

Although information theory let us know about something quite brilliant that it is the-
oretically possible to find a channel codes that for a given channel leads to vanishing error
probabilities as required, the design of good and efficient channel codes is generally difficult
problem to tackle.

1.2.3 A SIMPLE CHANNEL CODE: REPETITION CODE

A binary message stream is transmitted through a binary symmetric channel that causes
seldom bit flips (errors). The fundamental operation of coding is to add extra check symbols
to the message stream so that the errors can be efficiently found and corrected at the receiver.

Let us assume that a message symbol z consists of 30 bits. Before transmitting that in-
formation over the channel, we duplicate each bit an odd number zd times. This operation
is known as “encoding" the message symbol stream. After the channel a subset of 30zd bits
are in error where the size of the subset is a function of the channel characteristics. At the
decoder, if the majority of duplicated bits is i ∈ {0,1}, the transmitted bit is decoded to be
i ∈ {0,1}. Such an encoding/decoding pair with the associated code is known as the “repeti-
tion" code. Note that this simple code can correct up to (zd −1)/2 bits.

1.3 BASICS OF CHANNEL CODES

A binary code C of size |C | and blocklength n is a set of |C | binary words, {c1, . . . ,c|C |} of
length n each called codewords. The set of all the codewords is known as the codebook. In
most practical cases, |C | = 2k and the coded is referred to as a (n,k) binary code. The first
job is to create a codebook to choose the codewords from. the next operation is the map all
the binary message sequences with appropriate codewords. This mapping in fact defines the
encoding operation. The following is an example of a codebook and the mapping function of
message symbols. 

0 0
0 1
1 0
1 1


→
→
→
→


0 0 0 0 0
1 0 0 1 1
0 1 1 1 0
1 1 1 0 1


→
→
→
→


c1

c2

c3

c4

=C (1.11)

Finally, a decoding procedure is to undo the encoding operation after the channel after de-
ciding on one of the codewords which we believe transmitted. We already have seen one
example in the previous section that majority of bit labeling determines the decoding deci-
sion on the transmitted data bits. If the received codeword is none of the codewords in the
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codebook, then one of the codewords should be picked before undoing the encoding opera-
tion. One of the obvious choice is to choose codeword from the codebook that is closest to the
received word in some distance measure such as Euclidian distance. Here from implemen-
tation point of view, one can find simpler definitions of distance measure such as Hamming
distance we define next. Although we stick to binary codes throughout for simplicity, we try
to keep our definitions general.

Definition 1: The Hamming distance between two sequences x and y of length n, whose
elements are chosen from a finite set Ωq of size q, is denoted as D(x, y) and is defined to be the
number of positions in which x and y differ. The fractional Hamming distance is the ratio of
D(x, y) to the block length n i.e., γ(x, y) = D(x, y)/n.

One can verify that Hamming distance is nonnegative and symmetric. Moreover, it satis-
fies the triangular inequality and therefore it defines a metric on Ωn

q .
Definition 2: For a code C = {c1, . . . ,c|C |}., minimum Hamming distance Dmin of C is de-

fined to be the smallest Hamming distance between all possible codeword pairs, each of length
n symbols. In other words,

Dmin(C ) = min
ci ,c j∈C ,i ̸= j

D(ci ,c j ) (1.12)

Similarly, the fractional minimum Hamming distance of the code C is given by Dmin(C )/n.
Exercise 3: Note that Hamming distance is defined between two q-ary sequences. In this

exercise we will take the first step to generalize this definition. Suppose that instead of consid-
ering two codewords, we consider three codewords at the same time i.e., x1, x2, y and assume
that each codeword being mapped equally likely. Let us define D2(x̄, y) = [D(x1, y);D(x2, y)]
and S to be the covariance matrix that defines the correlation between x̄ = [x1, x2] and ȳ =
[y, y] vectors. We define 3-Hamming distance as

D3(x̄, y) =
√

D2(x̄, y)T S−1D2(x̄, y) (1.13)

Show that 3-Hamming distance is a metric and it reduces down to conventional definition of
Hamming distance when we consider only two codewords at a time.

Hint: Since codewords are independently generated and equally likely, S = [1/2, 0;0, 1/2].
Exercise 4: What is the minimum distance of the code shown in Eqn. (1.11).
Definition 3: The code rate of a code C ⊆Ωn

q is defined by

RC =
logq |C |

n logq |Ωq |
=

logq |C |
n

(1.14)

Note that for a (n,k,Dmin(C )) block code we |C | = qk , then the rate of the code is given by
RC = k/n.

As can be obvious by now that the minimum distance of the code C should have some-
thing to do with its error correction capability. Before explaining the relationship, we need to
define the concept of Hamming sphere to be able to define precisely how the decoder estab-
lishes the rule for deciding which codeword is transmitted.
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Definition 4: Given a codeword x ∈C , the Hamming sphere of radius r around x is defined
to be the set of all codewords that are in Hamming distance of r or less to x i.e., {∀y ∈ C ⊆
Ωn

q |D(x, y) ≤ r }.
Let us think of such spheres geometrically filling the space of all possible q-tuples i.e., Ωn

q .
Our objective is to draw spheres around each codeword such that no sphere has intersection
with another sphere and each sphere has the largest radius. For a given code C with mini-
mum distance Dmin(C ) or Dmin for short, in order to make sure no sphere intersects, we must
have equal size spheres of radius ⌊Dmin−1

2 ⌋. This is because if we allow radius of Dmin/2, there
will be at least two spheres touching eachother. In order to make sure they do not touch, we
subtract 1 from Dmin and divide by two to find the greatest radius that will allow no intersec-
tion between Hamming spheres. This discussion leads to the following Lemma.

Lemma 1: If C can correct up to t errors, Dmin(C ) = 2t + 1. This code can also detect 2t
errors or erasures. Here the “erasure" means that the location of errors are known and error
values must be computed. Any subset of codeword symbols of size 2t can be corrected.

If the received codeword contains more than t symbol errors, one of the two things can
happen: The received codeword will either be closer to some other codeword and decoded
wrong (this is also called decoding error or miscorrection) or it will be in none of the ham-
ming spheres we draw although it might be closer to only one of the codewords. Since ham-
ming spheres do not necessarily fill up the whole space, the received word may well fall in
the interstitial space between hamming spheres. In this case, a possibility could be to declare
“decoding failure" and the decoder outputs a flag indicating that the received codeword has
so many errors that the decoding cannot be completed. This type of decoding is known as
Bounded Distance Decoder and are easier to implement compared to a generic Complete De-
coder which never flags any decoding failure. The latter type might be preferable in terms of
performance at the expense of increased complexity.

The ultimate error correction capability of a code is given by the covering radius. The cov-
ering radius is related to the maximum weight of a random error vector that can be corrected
by the code. This definition of code’s power allows correction beyond half the minimum dis-
tance of the code of interest. The covering radius of a block code C of length n is defined
as the smallest integer r such that all vectors in the containing space are within Hamming
distance r of some codeword i.e.,

Co(C ) = max
x∈Ωn

q

{
min
c∈C

{D(x,c)}

}
(1.15)

Unfortunately, finding the covering radius of a code is NP-hard. There are efficient upper
and lower bounds on the covering radius however, exact formulations are still open problems
of the classical coding theory.

1.4 BOUNDS FOR CODE CONSTRUCTIONS

As we have defined Hamming spheres for code C ⊆Ωn
q , it is natural to wonder about the

size of the code for a given error correction capability t .In other words, one desirable property
of code would be to have high rate i.e., low redundant information added to the data, on the
other hand high rate means low error correction capability because it will be harder to pack
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so many spheres in Ωn
q . Thus, the natural upper bound on the size of the code C arises and is

given by
Lemma 2 (Hamming bound): Let C ⊆ Ωn

q be a code with minimum Hamming distance
Dmin. Then,

|C | ≤ qn∑⌊Dmin−1
2 ⌋

j=0

(n
j

)
(q −1) j

(1.16)

PROOF: First note that the Hamming spheres do not overlap if the sphere radius r ≤
⌊Dmin−1

2 ⌋ as we argued before. It is easy to compute the volume of a Hamming sphere with
radius r to be of the form

V olq (n,r ),
r∑

j=0

(
n

j

)
(q −1) j (1.17)

Therefore, since the spheres do not have anything in common, |C | ≤ qn/V olq (n,Dmin). �
Any code construction that achieves this bound with equality are called perfect codes.

We will give few examples of perfect codes in this class, but they are not abundant. Let us
give a greedy code construction approach that allows us to have a code with a minimum
distance Dmin. Let us start with any sequence x0 ∈Ωn

q and put it in C . Next, choose another
sequence x1, if any, which has a distance at least Dmin from x0. Similarly choose x2 which
has a distance at least Dmin from both x0 and x1. This approach ceases if we are no longer
able to find sequences having a distance at least Dmin from all the valid sequences already
chosen to be in C . Suppose we draw hamming spheres of radius Dmin −1 centered around
the codewords of C so that no sphere contains more than one codeword. It can be verified
that the union of all these spheres contains the set Ωn

q . It that was not the case there would be
some interstitial space between such spheres. In other words, there would be sequences in
that space that are at least distance Dmin from all the codewords of C . In that case, our greedy
approach would have not terminated. Since we the greedy construction method halts, there
remains no interstitial space between hamming spheres of radius Dmin −1 centered around
the codewords of C .

Lemma 3 (Gilbert-Varshamov bound): Let C ⊆ Ωn
q be a code consisting of q − ar y se-

quences of length n with minimum Hamming distance Dmin. Then, the largest size of the code
C is lower bounded by

|C | ≥
|Ωn

q |
V olq (n,Dmin −1)

= qn∑Dmin−1
j=0

(n
j

)
(q −1) j

(1.18)

PROOF: The proof follows from our previous discussion.
Exercise 5: For a prime power q , show that there exists (n,k) code C with minimum dis-

tance d with

k ≥ n −
⌊

logq

(
d−2∑
j=0

(
n −1

j

)
(q −1) j

)⌋
−1. (1.19)
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Let us suppose that |C | = qk for some prime power q and k ≤ n. Using Gilbert-Varshamov
bound, we can find a realizable range of values for code rate RC . By replacing C with qk in
Eqn. (1.18) and taking logq of both sides yields the bound k ≥ n − logq

(⌊V olq (n,Dmin −1)⌋).

On the other hand, using Hamming bound, we have k ≤ n − logq

(⌊V olq (n,⌊(Dmin −1)/2⌋)⌋).
Therefore using the definition of rate RC , we have

1− 1

n
logq

(⌊V olq (n,⌊(Dmin −1)/2⌋)⌋)≥ RC ≥ 1− 1

n
logq

(⌊V olq (n,Dmin −1)⌋) (1.20)

Next, we give a result from combinatorial probability about the relationship between en-
tropy function and hamming balls that will be useful for finding asymptotical bounds n →∞.

Lemma 4: For positive integer n and q ≥ 2, and a real number γ ∈ [0,1−1/q]

qnhq (γ)−o(n) ≤V olq (n,γn) ≤ qnhq (γ) (1.21)

where the entropy function is given by

hq (x) = x logq (q −1)− x logq x − (1−x) logq (1−x). (1.22)

As n → ∞, we will have V olq (n,γn) → qnhq (γ) where γ = Dmin/n is simply the fractional
minimum distance we introduced earlier. This result also implies the following asymptotical
bound on rate of the code:

RC ≥ 1−hq (γ)−o(1) (1.23)

Using a similar approach we can compute the asymptotical Hamming upper bound on
rate as follows. The details are left as an exercise.

RC ≤ 1−hq (Dmin(C )/2n)+o(1) = 1−hq (γ/2)+o(1) (1.24)

Before making an interesting observation about achieving the asymptotic Hamming bound,
we remember the famous Chernoff bound from classical probability theory and consider bi-
nary codes for simplicity i.e., q = 2,

Lemma 5: (Chernoff bound for i.i.d. Bernoulli random variables) Let X1,X2,X3,. . . ,Xm

are independent identically distributed binary random variables with Pr (Xi = 1) = p, then for
all ϵ and large n, we have the following relationships

Pr

(
n∑

i=1
Xi ≥ (p +ϵ)n

)
≤ 2

−ϵ2n
3 (1.25)

Pr

(
n∑

i=1
Xi ≤ (p −ϵ)n

)
≤ 2

−ϵ2n
3 (1.26)

This simply means that for large n, probability of having pn is close to one. In order to
correct so many errors, we need at least a code with minimum distance Dmin = 2pn. Thus,
asymptotically we have the upper bound on rate RC ≤ 1−h(2pn/2n) = 1−h(p). This result
simply says that if a code achieves the hamming bound, then it also achieves the capacity of
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the BSC with error probability p. This simply proves the existence of codes that can achieve
the capacity for BSC.

Lemma 6 (Singleton bound): Let C ⊆Ωn
q be a code consisting of q−ar y sequences of length

n with minimum distance Dmin, then, |C | ≤ qn−Dmin+1.
PROOF: Observe that we already have an upper bound by Hamming. Singleton bound is

another upper bound and is tight for codes with large alphabet sizes. We will later see that
for binary codes, Hamming bound is a much more improved upper bound. Suppose |C | >
qn−Dmin+1, since each codeword is unique sequence there must be at least two codewords
which agree in some n −d + 1 locations. Therefore, the Hamming distance between these
codewords is n − (n −d + 1) = d − 1 < d . This contradicts the hypothesis that code C has a
minimum distance d . �

This result also implies that codes must asymptotically satisfy RC ≤ 1−Dmin/n + o(1).
Singleton bound does not assume that q and n are chosen independently. It is valid for any
q , n and d . Another observation is that in the derivation of asymptotical result for GV bound,
we assumed 0 < γ< 1−1/q . This was something needed for the upper bound on the volume
V olq (n,γn) ≤ qhq (γn . So one can wonder is it possible to have positive rate and γ> 1−1/q at
the same time. This question is answered by the Plotkin bound.

Lemma 6 (Plotkin Bound): Let C ⊆Ωn
q be a code consisting of q −ar y sequences of length

n with fractional minimum distance γ, then

if γ= (1−1/q), |C | ≤ 2qn (1.27)

if γ> (1−1/q), |C | ≤ qγ

qγ−q +1
(1.28)

PROOF: The proof of Plotkin bound can be found in every coding theory book and there-
fore it will be skipped here.

The implications of this bound are significant. Using the definition of RC for γ≥ (1−1/q),
we have

RC =
logq |C |

n
≤


logq 2qn

n if γ= (1−1/q)
logq

(
qγ

qγ−q+1

)
n if γ> (1−1/q)

(1.29)

In both cases as n tends to infinity, the upper bound converge to 0 making us conclude
R ≤ 0. Since rate is non-negative quantity we conclude R = 0 for γ≥ 1−1/q .

Let partition the code space defined by the code C by grouping the codewords which
have the first n −m symbol locations agree. For example for x − th partition, the codewords
within that partition can be named as Cx ⊆ C and

∪
x Cx = C . Since codewords agree on the

first n −m symbol locations, the minimum distance of Cx must be equal to the minimum
distance of code C , Dmin. The block length of codewords of Cx is selected to be m < q

q−1 Dmin,
so that every possible x ∈Ωn−m

q will be used and the number of partitions are qn−m .

Since Dmin
m > q−1

q , we have

|Cx | ≤ q(Dmin/m)

q(Dmin/m)−q +1
≤ qDmin (1.30)
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Figure 1.3: For q = 2, bounds on the rate RC as a function of fractional minimum distance γ.

where the first inequality is due to Plotkin upper bound and the second inequality is because
qDmin − (q −1)m is an integer. Since partitions are disjoint, we finally have

|C | =
∑

x∈Ωn−m
q

|Cx | ≤
∑

x∈Ωn−m
q

qDmin = qn−m .qDmin ≤ qn− q
q−1 Dmin+o(n) (1.31)

Considering RC and dividing the both sides of the inequality by n will yield

RC ≤ 1−
(

q

q −1

)
γ+o(1) (1.32)

Note that this is a better bound than singleton bound particularly for small values of q .
Another way of stating this comparison is that if q is a fixed number and is independent of n,
then such class of codes cannot achieve the singleton bound. Fig. 1.3 depicts all the bounds
we discussed in this class for binary codes i.e., q = 2. similarly, the same bounds are drawn
for q = 256 in Fig. 1.4 . As can be noticed that with large q , Singleton and plotkin bounds
converge and Hamming bound become loose compared to singleton and Plotkin bounds.
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Figure 1.4: For q = 256, bounds on the rate RC as a function of fractional minimum distance γ.
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