
TECH NOTES QTM_R0: RELIABILITY THEORY

Durability and Availability of Erasure-Coded
Systems with Concurrent Maintenance

Şuayb Ş. Arslan

“All truths are easy to understand once they are discovered; the point is to discover them." G. Galilei.
Version 0.1 – April 2014

This document is written to establish some of the fundamentals of reliability theory as
well as to identify the theoretical machineries for the prediction of durability/availability of
the erasure-coded storage systems. Most of the contents of this document are dedicated to
a review of fundamentals as well as major improved stochastic models. Yet, it also has many
contributions. One of the contributions of this document is the introduction of one of the
most general form of Markov models for the estimation of mean time to failure numbers.
Very good approximations for the closed form solutions for this general model are investi-
gated. Various storage configurations under different policies are compared using such ad-
vanced models. Topics that include simulation modelings for more accurate estimations are
included towards the end of the document by noting the deficiencies of the simplified canon-
ical Markov models. Throughout the document, we shall focus on concurrently maintained
systems although the discussions will only slightly change for the systems repaired one device
at a time. Some background on probability and coding theory is expected.

1 DEVICE RELIABILITY BASICS

When a brand new product is put into service, it performs functional operations satisfac-
torily for a period of time, called useful time period, before eventually a failure occurs and the
device becomes no longer able to respond to incoming user requests. For a device compo-
nent, the observed time to failure (T T F) is a continuous random variable with a probability
density function fT T F (t), representing the lifetime of the product until the first permanent

1

Figure 1.1: Mean time to failure and repair visualized in time domain.

failure. The probability of failure of the device can be found using the cumulative distribu-
tion function (CDF) of T T F as follows,

FT T F (t), Pr {T T F ≤ t } =
∫ t

0
fT T F (y)d y, t > 0 (1.1)

We can think of FT T F (t) as an unreliability measure between time 0 and x. On the other
hand, the reliability function R(t) is defined as,

R(t), 1−FT T F (t) =
∫ ∞

t
fT T F (y)d y (1.2)

In other words, reliability is the probability of having no failures before time t and is re-
lated to CDF of T F F through Eqn. (1.2). Note that Eqn. (1.2) implies that we have fT T F (t) =
−dR(t)/d x. In a real world, it may not be possible to estimate the distribution function of
T F F directly from the available physical information. A useful function for clarifying the
relationship between physical modes of failure and the probability distribution of T F F is
known as the hazard rate function or failure rate function, frequently denoted as hT T F (t).
This function is defined as follows,

hT T F (t), fT T F (t)

R(t)
=− dR(t)

R(t)d t
(1.3)

Solution of the first order ordinary differential equation (1.3) yields the relationship hT T F (t) =
−d(ln(R(t)))/d t with the initial condition R(0) = 1. Note that knowing the hazard rate func-
tion is equivalent to knowing the distribution. Thus, when we talk about reliability of a sys-
tem, we interchangeably use these functions to quantify it. Mean time expected until the first
failure of a piece of equipment or a total data loss is one of the most popular measures of
reliability. Mean time to failure (MTTF) is defined to be the expected value of the random
variable T T F and is given by

MT T F = E[T T F] =
∫ ∞

0
R(t)d t ⇔ lim

t→∞ tR(t) = 0 (1.4)

2

1 0 0 1 1 0 1 0

Figure 1.2: A simple parity coding that appends a parity bit at the end of the block in order to
keep the total number of 1’s even.

Note that Eqn. (1.4) is true for distributions whose mean exists. For the rest of our discus-
sions, the subscript T T F is dropped for notation simplicity.

Annualized failure rate (AFR) for a device is frequently used to estimate the failure prob-
ability of a device or a component after a full-time year use. In the conventional approach,
time between the start of the operation and the point when failure happens are assumed to
be independent and exponentially distributed with a constant rate λ. Therefore AFR is given
by AF R = 1−R(t) = 1− e−λt , where λ = 1/MT T F and x is the running time index in hours.
MTTF is reported in hours and since there are 8760 hours in a year, AF R = 1− e−8760/MT T F .
Since 8760/MT T F ≪ 1, then AF R ≈ 8760/MT T F . Alternatively, if MTTF is expressed in
years, then AF R ≈ 1/MT T F .

In this document, if a device fails we assume that there is an external agent who can repair
it. The time needed for the agent to replace or repair a failed device is also a random variable
whose mean is called Mean Time To Repair (MTTR). To avoid MTTR, many companies pur-
chase spare products/hot swaps so that a replacement can be installed quickly. Generally,
however, customers inquire about the turn-around time of repairing a product, and indi-
rectly, this would eventually fall into the MTTR category. Finally, Mean Time Between Failure
(MTBF) is a reliability measure used to give the time between two consecutive failures of the
same device or system component. This is the most common inquiry about a product’s life
span, and is important in the decision-making process of the end user. Fig. 1.1 summarizes
these terms using a timeline of an operational storage system.

2 CODING BASICS FOR RELIABILITY

In real storage systems, the information contained in data nodes or devices are encoded to
generate some form of redundancy in order to make the user data robust against device fail-
ures/defects or random/burst errors. Whenever storage nodes/devices fail, the system con-
troller identifies those device failures and hence the failure locations are easily determined.
From a coding perspective, these failures are regarded as erasures. Therefore, the process of
creating this redundancy is called erasure correction coding or simply erasure coding. Erasure
coding is used to increase the reliability of the overall storage system. Error/erasure correc-
tion coding is quite old and inclusive subject, originated almost fifty years ago. We will only
consider erasure coding in the rest of this document.

Suppose that we have n devices that contain m blocks of user data. Then, we use era-
sure coding to generate redundancy that consists of a subdivision of that redundancy into c
blocks and storing them in c different devices i.e., the total number of devices is n = m + c.
A space optimal (also known as Maximum Distance Separable (MDS)) coding scheme allows

3

us to reconstruct the m device information from the information contained in any m out of n
devices. Thus one can realize that MDS codes enable a regular and understandable recovery
mechanism. A simple instance of MDS codes is the XOR-based parity coding scheme illus-
trated in Fig. 1.2. Using the “even" convention, the total number of binary 1’s are kept even
by adding one more binary digit at the end of the block. In linear algebra terms, for a given
(n,m) linear code defined by the generator matrix G, if all m×m submatrices of G are invert-
ible, then this linear code can tolerate any combination of c erasures. The class of codes that
has this property are called MDS codes.

We can divide erasure codes into three classes : flat MDS codes, parity–check array codes
and flat XOR–based codes. Reed-Solomon codes are example of flat MDS codes while exhibit-
ing computationally demanding implementation in practice. Most array codes are space–
optimal in the number of devices and less computationally expensive than Reed-Solomon,
but are typically only two or three device fault–tolerant [1], [2], [3]. Since the main purpose of
this document is to present the reliability issues of these codes with respect to maintainable
systems, the details of these codes are not presented. A good tutorial about erasure coding
for storage applications can be found at [4].

On the other hand, most of the modern codes are flat XOR-based codes and used to pro-
tect the data in storage applications. They are based on low complexity, low locality1, ir-
regular erasure correction coding i.e., codes with irregular failure tolerance. Such codes are
designed by considering the overall storage problem as a whole and they necessitate major
changes to modeling assumptions which lead to interesting open problems regarding the re-
liability/durability/availablity of the storage systems. These open problems shall be covered
throughout the document.

3 A MARKOV RELIABILITY MODEL WITH CONCURRENT MAINTENANCE

Traditionally, Markov models are used to evaluate the reliability of erasure-coded storage
systems. Since we deal with system failures or total data loss scenarios, the class of Markov
models we consider has absorbing states. An absorbing state is a system failure state or a total
data loss state that, once entered, cannot be departed. Most models assume a RAID-like set-
ting (i.e. MDS code – regular fault tolerance as explained previous sections), independence
between failures and exponentially distributed failure/rebuild times. For this case, Markov
models are perfect fit for modeling the system behavior. In fact, Markov models have pro-
vided a great deal of insight into the sensitivity of disk failure and repair on system reliability,
despite these models generally capture an extremely simplistic view of an actual system.

The canonical Markov model used in storage systems is based on parity coding, which
can tolerate only one device failure out of say, n storage units or devices. There are a total of
three states; state n represents the state of all devices are active and operational, state n −1
represents the state of one failed device and state F is the state of failure because at least two

1In the context of erasure coding for storage, the term locality means the number of storage units or coding
symbols that need to be accessed for recovering a specific unit or symbol. Locality can be considered in terms
of purely coding perspective or coding+allocation strategy perspective. The context in which the locality is
referred matters and may bring out different conclusions.

4

n n-1 F

nl (n-1)l

m

Figure 3.1: A canonical continuous time Markov model for the reliability estimation of parity-
coded data.

devices are failed and data integrity is lost. It is assumed that all devices fail or are repaired at
the constant rates λ and µ, respectively. State diagram of the Markov model is shown in Fig.
3.1. Let us start with the following lemma and use its result to talk about holding times i.e.,
the time it takes to hold in a specific state.

Lemma 1: Let X1, . . . , Xn be independent exponentially distributed random variables with
rates λi for i = 1, . . . ,n. Then, the distribution function of min{X1, . . . , Xn} is exponential with
rate

∑
i λi and the probability that the minimum is Xs , s ∈ {1, . . . ,n} is given by λs/

∑
i λi .

PROOF: Let us consider the probability,

Pr {min{X1, . . . , Xn} > t } =
∏

i
Pr {Xi > t } = e−(

∑
i λi)t (3.1)

which means that the cumulative distribution function of min{X1, . . . , Xn} is that of an expo-
nential distribution with rate

∑
i λi . One can realize that it is not the case with max{X1, . . . , Xn}.

Furthermore,

Pr {Xs is the minimum} = Pr {Xs < X j for j ̸= s} (3.2)

=
∫ ∞

0
Pr

{
Xs < X j for j ̸= s|Xs = t

}
λse−λs t d t (3.3)

=
∫ ∞

0
λse−λs t

∏
j ̸=s

e−λ j t d t =λs

∫ ∞

0
e−(

∑
j λ j)t (3.4)

= λs/(λ1 +·· ·+λn) (3.5)

as desired. �
Since in each state, the label represents the number of devices failing with the same rate

λ, the transition out of state n happens with rate nλ. Using the result of lemma 1, we can
conclude that the holding time Yn is exponentially distributed with rate nλ. Similarly, the
holding time in state n −1, Yn−1 is exponentially distributed with rate (n−1)λ+µ. The prob-
ability that the system transitions from state n − 1 to state F (failed state) with probability
pF = (n −1)λ/((n −1)λ+µ).

Traditional storage system reliability analysis uses a metric called the mean time to data
loss (MTTDL). MTTDL is the expected (average) time to enter state F . MTTDL is not a direct
measure of reliability but is an average based on the reliability, given by

∫ ∞
0 R(t)d t . MTTDL

might be very hard to compute for most of the stochastic models that describe the real life

5

n n-1 m Fj

m

(n-j)m (n-m)m

nl (n-1)l (j+1)l jl (m+1)l ml

Figure 3.2: A generalized continuous time Markov model for the reliability estimation of
(n,m)–coded data.

failure phenomenon. Fortunately, there are explicit mathematical methods to compute the
MTTDL for simpler Markov models such as given in Fig. 3.1.

Let us assume we visit state n −1 repeatedly K many times before the whole system ends
up in state F . Thus the total time before data loss is given by

YDL =
K∑

i=1
(Y (i)

n +Y (i)
n−1) (3.6)

where Y (i)
n is the i -th holding time. By definition, MTTDL is E[YDL]. Conditioning on K = k

and summing over all possibilities (unconditioning over the distribution of K – the distribu-
tion of K turns out to be Geometric) will yield

E[YDL] =
∞∑

k=1

(
k∑

i=1
(EY (i)

n +EY (i)
n−1)

)
pF (1−pF)k−1 (3.7)

=
∞∑

k=1

(
k

nλ
+ k

(n −1)λ+µ

)
pF (1−pF)k−1 (3.8)

= 2nλ+µ−λ

nλ((n −1)λ+µ)
E[K] = 2nλ+µ−λ

nλ((n −1)λ+µ)

(n −1)λ+µ

(n −1)λ
(3.9)

= µ+λ(2n −1)

λ2n(n −1)
(3.10)

Note that probability distribution of YDL is not exponential yet its mean is easy to com-
pute. In fact, the probability distribution of YDL is a sum of exponentials, but hard to compute
it in a closed form. Later, we will see good approximations for YDL yield a sum of exponentials
argument as well. Let us generalize the Markov model in Fig. 3.1 by letting the system correct
c device failures with m data units or devices i.e., n = m + c. The previous parity-coded sys-
tem has c = 1 and m = n −1. Furthermore, let us assume that concurrent repairs are made in
each state so that we have the Markov model shown in Fig. 3.2. Particularly for this type of
generalization, there are Laplace transform-based techniques to compute the MTTDL.

The reliability function R(t) is the probability of being in any state except the state F
before time t . In otherwords,

R(t) = Pn(t)+Pn−1(t)+·· ·+Pm+1(t)+Pm(t) (3.11)

6

where P j (t) is the probability of being in state j at time t . Furthermore, Laplace transform of
the reliability function R(t) for t ≥ 0 is given by

R∗(s) =
∫ ∞

0
R(t)e−st d t (3.12)

From equation (3.12), we recognize that MTTDL is an aggregate measure of reliability and
is given by the evaluation of transformed function at s = 0, i.e.,

MT T DL = R∗(0) =
∫ ∞

0
R(t)d t =

∫ ∞

0
Pn(t)d t +·· ·+

∫ ∞

0
Pm(t)d t (3.13)

= P∗
n (0)+P∗

n−1(0)+·· ·+P∗
m(0) (3.14)

Using some probability theory background, let us write down the conventional Kolo-
mogorov equations in time domain for this model as follows [5],

P ′
n(t)+Pn(t).nλ = Pn−1(t).µ+Pn−1(t).2µ+·· ·+Pn−1(t).(n −m)µ

. . .

P ′
j (t)+P j (t).(jλ+ (n − j)µ) = P j−1(t).(j +1)λ

. . .

P ′
F (t) = Pm(t).mλ

and the corresponding transform domain equations shall be,

sP∗
n (s)−Pn(0)+P∗

n (s).nλ = P∗
n−1(s).µ+P∗

n−2(s).2µ+·· ·+P∗
m(s).(n −m)µ

. . .

sP∗
j (s)−P j (0)+P∗

j (s).(jλ+ (n − j)µ) = P∗
j−1(s).(j +1)λ

. . .

sP∗
F (t)−PF (0) = P∗

m(s).mλ

with the initial conditions Pn(0) = 1 and P j (0) = 0 for j < n. These linear set of equations can
be put in a matrix form easily as follows,

s +nλ −µ −2µ . . . −(n −m)µ 0
−nλ s + (n −1)λ+µ 0 . . . 0 0

...
...

. . .
...

...
...

0 0 . . . 0 −mλ s

P∗
n (s)

P∗
n−1(s)

...
P∗

F (s)

=

1
0
...
0

and can be expressed in a matrix notation

AP = N(0)

from which the inversion of the matrix (A−1) and multiplication from right yields the solution
for P i.e., P∗

j (s) for j ∈ {n,n−1, . . . ,m,F } where N(l) = [0 0 . . .0 1 0. . . 0 0] and (l +1)th vector
entry is unity. Of course for large n, efficient methods to invert the matrix might be needed.

7

Once we find P∗
j (s), using inverse Laplace transform, we can obtain P j (t) and eventually R(t).

For example in [6], MTTDL for c = 1, c = 2 and c = 3 are calculated explicitly and they are given
by

MT T DLc=1 = µ+λ(2m +1)

λ2m(m +1)

MT T DLc=2 = 2µ2 +µλ(5m +6)+λ2(3m2 +6m +2)

λ3m(m +1)(m +2)

MT T DLc=3 = 6µ3 +µ2λ(17m +33)+µλ2(14m2 +47m +33)+2λ3(2m3 +9m2 +11m +3)

λ4m(m +1)(m +2)(m +3)

Since we are interested in the first column of the matrix inverse, MATLAB/Mathematica
symbolic inverse computation capability may be very useful to calculate explicit expressions
for reasonable choices of c. As can be seen MT T DLc=1 is the same as the equation in (3.10)
we previously derived. We observe that for large c, MTTDL expressions get quite complicated.
In conventional storage systems however, ω = µ/λ ratio is very large. Therefore, simplifica-
tions to MTTDL can be performed using the assumption ω=µ/λ≫ 1. In [7], an approximate
expression for the generic MTTDL is derived based on the assumption that ω ratio is very
large. The approximate expression is quite neat and given by

MT T DLc ≈ ωc

λ(n − c)
(n

c

) (3.15)

Unfortunately, even with this assumption the expressions for R(t) for large values of c gets
very complicated. In [6], good approximations for R(t) are given for any m and c = 0,1,2 and
3 as follows

Rc=0(t) = e−mλt (3.16)

Rc=1(t) ≈ C1,m,0e−t/MT T DLc=1 +C1,m,−µe−t (µ+λ(2m+1)) (3.17)

Rc=2(t) ≈ C2,m,0e−t/MT T DLc=2 +C2,m,−µe−t (µ+λ(2m+3)) +C2,m,−2µe−t (2µ+λm) (3.18)

Rc=3(t) ≈ C3,m,0e−t/MT T DLc=3 +C3,m,−µe−t (µ+λ(2m+5))

+C3,m,−2µe−t (2µ+λ(m+1)) +C3,m,−3µe−t (3µ+λm) (3.19)

where the coefficients of the exponentials are

Cc ,m,0 = 1+
c∑

i=1

1

i
m

(
m + c

c

)
ω−c−1 (3.20)

and

C1,m,−µ =−λ2m(m +1)

µ2 ,C2,m,−µ =−λ3m(m +1)(m +2)

µ3 ,C3,m,−µ =−λ4m(m +1)(m +2)(m +3)

2µ4 ,

C2,m,−2µ =−λ3m(m +1)(m +2)

4µ3 ,C3,m,−2µ =−λ4m(m +1)(m +2)(m +3)

4µ4 ,

C3,m,−3µ =−λ4m(m +1)(m +2)(m +3)

18µ4 .

8

Through a tedious algebra, these expressions can be generalized to any m and c, although
the original work has not derived those expressions [6]. Exact closed form expressions for the
general case is an open problem.

3.1 DURABILITY AND MTTDL

One of the important metrics related to the theory of reliability is durability. This metric
is defined to be the duration of time the system is able to provide access to the user data
or entity. If the data is protected by a redundancy mechanism i.e., replication or erasure
correction coding, durability refers to the permanent loss of the encoded/replicated user data
rather than the permanent loss of parity or replica blocks. The unit of durability is usually
expressed in terms of days or years. In industry terminology however, durability is expressed
in terms of nines (9’s). This refers to the probability of seeing no error during the operation of
the system for the first few number of years.

As mentioned before, the aggregate nature of the MTTDL reveals only very little informa-
tion about the reliability/durability of the overall system. Exact calculations for the time to
data loss distribution will yield the actual information about the reliability of the system, yet
it may be cumbersome to compute it. We have seen that R(t) is not exponentially distributed
in general. However for simplicity let us assume it is distributed exponentially with the rate

1/MT T DL. The number of 9’s is then given by
⌊

log10

(
1

1−R(t)

)⌋
where R(t) = e−t/MT T DL is the

reliability/durability function and t ≥ 0 is the time expressed in units of MTTDL (usually in
hours). For example, for a system with MTTDL of 2,500,000 hours, and an operating time of
interest of 1 year (8760 hours), we have the durability number computed as follows,

R(8760) = e−8760/2500000 = 0.9965 → two 9’s (3.21)

which means the system will operate without a failure with probability 0.9965 for the first year
of use at a 100% duty cycle. Next, this simplistic view will be compared to the approximations
given in the previous section for a replication redundancy scheme. We shall see later in the
document that the exponential approximation is pretty good for durability computations.

3.2 A CASE STUDY: REPLICATION V.S. ERASURE CORRECTION

Data storage systems use different redundancy schemes to prevent data loss that can oc-
cur because of multiple concurrent2 device failures. Replication is one of the widely used
schemes where each data block is replicated and the replicas are stored in different nodes to
improve the chances that at least one replica survives when multiple storage nodes fail. In
a replication scheme, m = 1 and c = 1,2, Table 3.1 illustrates that for large ω, approxi-
mations given for MT T DL and the time to failure distribution being exponential are quite
accurate, particularly when the quantities are expressed in terms of nines.

Let us increase the number of data devices from m = 1 to m = 100 and recalculate these
values for c = 1,2,3. The results are shown in Table 3.2. As can be seen, approximations are
still mostly accurate, if not, they are an underestimator.

2Here the failures need not to fail at exactly the same point in time. We rather refer to the extra failures as
concurrent failures before the repair of the failed devices is completed.

9

Fail/Repair rates c = 1 c = 2 c = 3
λ µ e−t/MT T DL1 Rc=1(t) e−t/MT T DL2 Rc=2(t) e−t/MT T DL3 Rc=3(t)

1/200K 1/24 4 4 8 8 12 12
1/500K 1/24 5 5 9 9 14 14
1/1.2M 1/24 6 6 11 11 15 15
1/200K 1/240 3 3 6 6 9 9
1/500K 1/240 4 4 7 7 11 11
1/1.2M 1/240 5 5 9 9 12 12

Table 3.1: Number of Nines for 3 and 4-replicated systems per archive.

Fail/Repair rates c = 1 c = 2 c = 3
λ µ e−t/MT T DL1 Rc=1(t) e−t/MT T DL2 Rc=2(t) e−t/MT T DL3 Rc=3(t)

1/200K 1/24 1 1 3 3 5 5
1/500K 1/24 2 2 4 4 7 7
1/1.2M 1/24 2 2 5 5 8 8
1/200K 1/240 0 0 1 1 2 3
1/500K 1/240 1 1 2 2 4 4
1/1.2M 1/240 1 1 3 3 5 6

Table 3.2: Number of Nines for Erasure-coded systems per archive.

3.3 DISCUSSION ON THE ACCURACY OF MTTDL

Although MTTDL is a useful tool for making relative comparisons, it is meaningless mea-
sure for the absolute measurements [8]. In addition, given the unrealistic assumptions used
to derive closed-form expressions, it became a subject of question recently. A system designer
may be interested in the probability of failure for the first few years instead of the mean time
to failure. The aggregate nature of the MTTDL usually conveys very limited information to the
customer. In fact, R(t), also known as durability, is what most of the customers are interested
in.

Traditional reliability models were constructed with four simplifying assumptions: the
only failures are whole-device failures, the use of single-disk fault-tolerant codes such as par-
ity coding, devices fail at a constant rate, devices are repaired at a constant rate. While tradi-
tional Markov models enable quick analytic reliability estimates of single-disk fault-tolerant
systems, they do not extend well to multi-disk fault-tolerant systems, the inclusion of sector
failures and they do not compensate for time dependence in failure and repair.

There are several problems with these set of assumptions of a simple Markov model. For
example, many models do not account for sector failures, do not accurately model device
rebuild processes and assume that all devices exhibit the same failure/rebuild rates. In ad-
dition, extension to a general model that accounts for m-erasure correction is not straight-
forward. Canonical Markov models have memoryless interarrival times, yet most of the time,
the storage components already in the rebuilt process are assumed to start repair from the
beginning if another storage component fails. These considerations led research community
to think of more advanced modeling techniques to estimate the reliability more accurately.

10

n n-1 m F

m

(n-m)m

nl (n-1)l (m+1) (1-m)l h ml

m+1

(m+2)l

(m+1) ml h

Figure 3.3: A continuous time Markov model for the reliability estimation of (n,m)–coded
data incorporates the hard errors in MT T DL estimation.

Most of them emphasize the hardness of deriving analytical results and encourage Monte
Carlo type simulations for accurate estimations [10].

3.4 ARGUMENTS IN FAVOR OF MTTDL AND ADVANCED MODELS

Although the inaccuracies of the previous calculations of MTTDL are plenty, this notori-
ous reliability metric, based on exponential failure and repair times, has been shown to be
insensitive to the actual distribution of failure/repair times as long as the constituent stor-
age devices have MTTF being much larger than their MTTR [9] and operate independent of
eachother. This result essentially implies that the system MTTDL computations of previous
sections will not be affected if the device failure distributions were changed from an expo-
nential to a some other distribution with the same mean. Given that, there have been few
attempts to make the original Markov model more realistic. We shall review them in this sec-
tion and propose the most general form of the canonical model for reliability estimations.

3.4.1 INCORPORATING A HARD ERROR (UNCORRECTABLE ERROR)

This requirement is observed to be necessary when the system operates in the criti-
cal mode i.e., a state in which one more device failure leads to total system crash and/or
data loss. This requirement imposes a slight change in our Markov model as shown in Fig.
3.3. In this model, η represents the probability of seeing an uncorrectable error per device
read during the rebuilt process. Let UCER denote the uncorrectable error rate of the device
(such as 10−15, expressed in terms of errors per number of bytes or bits read), η is given by
device capacity× UCER. Although this is the published expression [11], it comprises an
inaccuracy that device capacity×UCER can be greater than 1. However, η appears to be a
probability term and must satisfy 0 ≤ η≤ 1. Thus, a more accurate expression can be given as
η= 1− (1−UCER)device capacity.

The transition from state m+1 to state F is introduced to model the rate at which the sys-
tem encounters an uncorrectable error while reading and rebuilding t device failures. Based
on the analysis given in [11], the rate is computed as the product of the rate that a disk fails
when (m+1) devices are available, i.e., (m+1)λ and the probability of encountering an uncor-
rectable error when reading m devices for rebuild (Note here that we assume conventional

11

n n-1 m F

m
0

l
0

m+1

l
1

l
n-m-2

l
n-m-1

l
n-m

m
n-m-2 m

n-m-1

g
0 g

1

g
n-m-1

Figure 3.4: A generalized continuous time Markov model that can be used for the reliability
estimation of (n,m)–coded data that incorporates the irregular fault tolerance as
well as the hard errors in MT T DL estimation.

MDS codes, which may require many device reads), i.e., PUC ER = mη. Similar to our previous
argument, this product can assume values greater than one. A more accurate expression shall
be given by

PUC ER = 1− (1−η)m (3.22)

An approximate solution for the MTTDL (without the corrections given for η and PUC ER

i.e., η= device capacity×UCER and PUC ER = mη) is given in [11] for one-device-at-a-time
repair strategy. Using similar arguments we can easily extend those results to concurrent
repairs and obtain the following expression for η≪ n and ω=µ/λ≫ 1,

MT T DLc ≈ c !wc

n(n −1) . . . (n −c)(λ+ηµ)
(3.23)

3.4.2 MODIFICATIONS FOR IRREGULAR CODES OR MULTIPLE REGULAR CODES

In addition to previous improvements, let us generalize the model to cover the class of
more popular irregular erasure correction codes. By “irregular", we mean the modern non-
MDS erasure correction codes that are constructed based on bipartite graphs and has irregu-
lar fault tolerance. Most prominent ones of this class are XOR-based LDPC or fountain codes
that possess good reparability properties with simple encoding and decoding operations.

Let us introduce one of the most general Markov model and its application to reliability
analysis of systems which are protected by irregular codes. Note that few generalizations are
made in [11], but not to that level shown in Fig. 3.4. Furthermore, some special cases of this
model is considered and analyzed such as in [12]. In this model, device failures happen one
at a time with rate λi while due to irregular fault tolerance of the erasure correction code, it is
possible to go from any state except state m to fail state with some rate γi . Also, as mentioned
in the past research that Markov models assume rebuild clock is ignored. In other words,
each Markov model resets the rebuild time for all disks being rebuilt whenever another disk
fails during rebuild. The model of concurrent rebuilds considered in this document adopts a
rebuild policy that restarts the rebuild of all failed disks each time a disk fails. Alternatively,

12

one could estimate the remaining repair time at each state by steadily increasing the rate of
ongoing rebuild operations as more failures occur. Thus, in a general model we should allow
different rebuild rates µi to meet this goal of better modeling the real world.

With regard to this general model, there are three questions to be explored,

• Given the nature of the irregular code and its fault tolerance, how do we efficiently
compute rates {λi ,γi } to be able to use with this model?

• Given the nature of rebuilds and associated system format/structure, how do we esti-
mate rates {µi } to be able to use with this model?

• Is there a closed form expression for MTTDL? and R(t)? for any c and m.

Let us start with the first question. This question is in fact answered in [11]. Given the
irregular code and the symbol allocation policy (such as CRUSH [13]), let us denote the prob-
ability pk that the overall system can tolerate one more device failure provided that it has
already tolerated k failed devices. There are two scenarios that can lead from an operational
(survival) state to failure (absorbing) state. First of all, at the j -th state (n ≥ j ≥ m) one more
device fails and the correction code cannot tolerate for this loss and the state change ends up
with the failure state. The rate of this happening is jλ(1−pn− j), direct multiplication follows
from basic Markov models in probability theory. Another scenario that ends up in data loss
is that an extra device fails, the erasure code is able to tolerate. Yet, during the rebuild pro-
cess a hard error (uncorrectable error) is encountered and the erasure code cannot tolerate
this additional error. The rate of this happening is given by jλpn− j (1−pn− j+1)(j −1)η which
can be obtained using conditional probability arguments. Ofcourse, here we assume all the
operational j −1 devices are used/accessed in the rebuilt process which may not necessarily
be the case for regenerating erasure codes [17]. Thus, the expression can be modified based
on the properties of the erasure code used. Finally since λn− j +γn− j = jλ, for n ≥ j ≥ m +1
we have the following

γn− j = jλ
(
(1−pn− j)+pn− j (1−pn− j+1)(j −1)η

)
(3.24)

λn− j = jλ−γn− j (3.25)

with λn−m = (n −m)λ and γn−m = 0.
Here, we still need to explain how to obtain conditional probabilities pk s. Let us denote

the unconditional probability qk that the overall system can tolerate k device failures out of(n
k

)
total number of possible instances. Suppose that sk of these possibilities can be tolerated

by the system, then we have qk = sk

/(n
k

)
. Suppose that a k +1 pattern of failures the system

can tolerate, than any failure subset of size k of these k + 1 failures can be tolerated. This
means that pk = qk+1/qk , or more explicitly,

pk = sk+1(n
k+1

)/ sk(n
k

) = sk+1(k +1)

sk (n −k)
(3.26)

where sk s are usually found through an elaborate test of the overall system (erasure code per-
formance/properties plus the symbol allocation strategies) protected by the irregular erasure

13

20 19 17 F

m
0

l
0

18

l
1

g
0g

1

l
2

l
4

g
2

m
1 m

2

16

l
3

m
3

g
3

Figure 3.5: A generalized Markov model used for the reliability estimation of two (10,8) RAID
6 arrays.

code. Independent of the allocation policy, studies like [14] investigate fault tolerance met-
rics such as minimum erasure patterns for any linear block code. The results of such studies
can be useful for the computation of durability numbers of erasure-coded storage systems,
as we shall see shortly.

For the second question, we can simply assume µi = µ (namely a homogenous repair
process) where the rebuild time for n − i devices is the same as the rebuild times for a single
derive. Ofcourse more elaborate approaches will increase the accuracy in the final durability
results. In another system, concurrent failure repair may imply µi = (i +1)µ (namely progres-
sive repair) because each device is repaired with the same rate µ. Thus, the choice for repair
rates are a strong function of the overall system implementation.

As for the third question, we can use Mathematica or Matlab symbolic toolbox to cal-
culate closed form expressions for small values of m and c. The derivation of a closed form
expression for any m and c can be significant for two main reasons. First, we can model the
durability modeling for long block length irregular codes (whose block sizes are practically
designed to be long compared to that of conventional algebraic codes). Secondly, we can
model multiple (in fact a vast array of) short length MDS-protected RAID type systems.

Let us give an example for the latter: consider two 2 out-of 10 (m = 8, c = 2) RAID6 systems
that are used to store user data with n = 20. We notice that

• Every zero-device failure can be tolerated (q0 = 1).

• Every one-device failure (each
(20

1

)= 20 possibilities) can be tolerated (q1 = 1).

• Every two-device failures (each
(20

2

)= 190 possibilities) can be tolerated (q2 = 1).

• Only 900 three-device failures out-of 1140 = (20
3

)
can be tolerated (q3 = 0.7895).

• Only 2025 three-device failures out-of 4845 = (20
4

)
can be tolerated (q4 = 0.4180).

• No device failure larger than four can be tolerated (qk = 0 for k > 4).

from which we deduce {p0, p1, p2, p3, p4} = {1,1,0.7895,0.5294,0}. The Markov model shown
in Fig. 3.6 is used to estimate the reliability with the following set of parameters,

14

Fail/Repair rates General Markov (HR) General Markov (PR) Conventional Method (PR)
λ µ MTTDL Durability 9’s MTTDL Durability 9’s MTTDL Durability 9’s

1/200K 1/24 1.035×109 5 1.1×109 5 1.93×1010 6
1/500K 1/24 6.9×109 5 7.1×109 5 3.01×1011 7
1/1.2M 1/24 4.1×1010 6 4.13×1010 6 4.17×1012 8

Table 3.3: Number of nines for two RAID6 systems with m = 8 and c = 2. HR: Homogenous
Repair i.e., µi =µ, PR: Progressive Repair i.e., µi = (i +1)µ.

• γ0 = nλ
(
(1−p0)+p0(1−p1)(n −1)η

)= 0,
λ0 = nλ−γ0 = nλ= 20λ.

• γ1 = (n −1)λ
(
(1−p1)+p1(1−p2)(n −2)η

)= 0.2105× (n −1)(n −2)λη= 72λη,
λ1 = (n −1)λ−γ1 = 19λ−72λη.

• γ2 = (n −2)λ
(
(1−p2)+p2(1−p3)(n −3)η

)= 3.79λ−33.4λη,
λ2 = (n −2)λ−γ2 = 18λ−3.79λ+33.4λη= 14.21λ+33.4λη.

• γ3 = (n −3)λ
(
(1−p3)+p3(1−p4)(n −4)η

)= 8λ−144λη
λ3 = (n −3)λ−γ3 = 17λ−8λ+144λη= 9λ+144λη.

• γ4 = 0
λ4 = (n −4)λ= 16λ.

Let us further assume we use disks of size 1T B as our storage devices with 10−15 uncor-
rectable error rate i.e., η= 10−3. The results for MTTDL as well as durability in terms of 9′s are
obtained using symbolic computations through MATLAB and are evaluated/presented in Ta-
ble 3.3. Closed form expressions for this general case, m and c to allow efficient computation
will be given in the next section.

As can be seen changing the repair strategy has only minor effect on the MTTDL results.
Also included are the set of results using the basic model for each RAID6 array and compute
the MTTDL using Equation (3.15). It assumes exponential data loss probability distribution
and thus computes the MTTDL of the two RAID6 arrays based on a simple algebraic addition
of data loss rates. This conventional scheme does not take into account the uncorrectable er-
rors as well. As expected, the results with conventional scheme show more optimistic MTTDL
and durability numbers.

For an arbitrary number of MDS-protected arrays of devices, it turns out that there is a
closed form expression for sk . In other words, let us assume we have π arrays each having n
devices c of which are redundant for failure recovery. The total number of choosing k failed
devices out of πn is given by

(πn
k

)
. Let us assume further that there are r j number of arrays

with j device failures with 0 ≤ j ≤ c. The general expression for sk can be given by [11]

sk =
∑

r0+r1+···+rc=π∑c
i=0

i ri =k

(
π

r0,r1, . . . ,rc

)
c∏

i=0

(
n

i

)ri

(3.27)

This expression follows because

15

Parity of
parities

Parity
Type 1

Parity
Type 2

Data
Section

c
1

c
2

m
1

m
2

Figure 3.6: A two-dimensional RAID scheme where m1m2 data blocks are protected by a total
of c1k2 +c2k1 + c1c2 parity blocks.

• the multinomial coefficient counts the number of combinations we can distribute i
failures over ri arrays etc.

• Given that ri arrays with i failures, there are
(n

i

)ri ways for distributing those failures,

with the constraint that total number of arrays must be π and failures be k. Multinomial
theorem is a generalization of the binomial theorem. This generalized version implies that
we have

(x0 +x1 +·· ·+xc)π = ∑
r0+r1+···+rc=π

(
π

r0,r1, . . . ,rc

)
c∏

i=0
xri

i (3.28)

If we replace xi with
(n

i

)
xi , we shall have(

1+
(

n

1

)
x +

(
n

2

)
x2 +·· ·+

(
n

c

)
xc

)π
= ∑

r0+r1+···+rc=π

(
π

r0,r1, . . . ,rc

)
c∏

i=0

(
n

i

)ri

x
∑c

i=0 i ri (3.29)

from which we notice that if we set
∑c

i=0 i ri = k, we can realize that sk is the coefficient in this
expansion for xk , i.e.,

sk = coe f

((
c∑

i=0

(
n

i

)
xi

)π
, xk

)
(3.30)

Therefore, we have

pk =
coe f

((∑c
i=0

(n
i

)
xi

)π
, xk+1

)
(k +1)

coe f
((∑c

i=0

(n
i

)
xi

)π , xk
)

(πn −k)
(3.31)

16

0 5 10 15 20 25 30 35 40
10

−2

10
−1

10
0

X: 5
Y: 1

k

q
k

m=10
m=20
m=50

Figure 3.7: qk values as a function of k and m for a RAID61 configuration.

3.4.3 2D STORAGE ARRAYS USING MDS CODES

Another interesting case is the use of MDS codes in the context of two dimensional storage
arrays. In the past, particular class of two-dimensional RAID schemes are shown to provide
better reliability against single dimensional counterparts [15]. However, no general treatment
has been conducted. There are recent studies like [16], they only consider the mean time to
the first failure of multidimensional RAID type storage systems using certain assumptions
like independence. Here our consideration is more general for two-dimensional arrays and
aims at finding reliability estimates about MTTDL using the general Markov model. For this,
we need to determine sk s and error tolerability of two dimensional storage arrays. We assume
that each horizontal and vertical array component are protected by an MDS code with c1 and
c2 parity blocks, respectively. A simple bounded distance decoder is assumed. Decoding can
start either in horizontal or vertical direction wherever appropriate. For notation simplicity
let n1 = m1 + c1 and n2 = m2 + c2. We have the following conjecture for sk if k ≤ (c1 +1)(c2 +
1)+min{c1,c2}

sk =
{(n1n2

k

)
if k ≤ c1c2 + c1 + c2(n1n2

k

)− (n1
c1+1

)(n2
c2+1

)(n1n2−(c1+1)(c2+1)
k−(c1+1)(c2+1)

)
if (c1 +1)(c2 +1) ≤ k ≤ (c1 +1)(c2 +1)+min{c1,c2}

The exact expressions for sk for k > (c1+1)(c2+1)+min{c1,c2} gets more complicated and
the closed form expressions for any k is an open problem. Let us consider an example that is
a special case of the 2D storage arrays using MDS codes.

Example 1: A mirrored (n1,m1)-coded array (c1 = n1 −m1 parities), is a special case of a
2D storage array where the vertical encoding is nothing but a single parity generation though
information duplication. For example RAID 51 and RAID 61 systems are special cases of this
example. In order for a column to fail, both of the copies must be unavailable/failed. For
a given k device failures in the 2D array, there are at most ⌊k/2⌋ column failures. Since the

17

horizontal array can tolerate c1 device failures at most, maximum number of column failures
can not exceed min{⌊k/2⌋,c1} in order for the overall system be able to recover the data. For a
given 0 ≤ j ≤ min{⌊k/2⌋,c1} column failures, we realize that equation (3.30) can be used with
k = k −2 j , n = 2 and r = n1 to calculate number of tolerable cases for each j . Note also that
each case constitute a disjoint set. Since we have

(n1
j

)
possible selections of these columns,

we have

sk =
min{⌊k/2⌋,c1}∑

j=0

(
n1

j

)
coe f

(
(1+2x)n1 , xk−2 j

)
1y≤n1+ j (k) (3.32)

where 1y≤A(y) is the indicator function that evaluates to 1 if y ≤ A. This function is needed
in our expression because for each term in the summation, we assume there are j column
failures and if k −2 j > n1 − j or k > n1 + j , it would mean that there are at least j +1 column
failures, which is contrary to our conditional statement that we have j column failures.

In Fig. 3.7, the computation for qk is shown for RAID61 (c1 = 2) configuration with m1 =
10,20,50 and n2 = 2 as a function of k. Notice that for each case if k ≤ c1c2 + c1 + c2 = 5, all
combinations of k failed devices are tolerable. It might be interesting for example to drive a
similar expression for n2 = 3 while we keep c2 = 1 by using parity coding. Even in this simple
extension, the expression can get pretty complex. We also note that the precise definition
of the decoding algorithm across all devices also play a key role for the calculation of sk for
this particular configuration. For instance, vertical and horizontal decoding iterations can be
allowed until the decoding can no longer improve the failure statistics.

Exercise 1: Using the result of the above example, compute the MTTDL estimates of
RAID51, RAID6 and RAID61 for comparison. Use λ = 1/200K and µ = 1/24 in your com-
putations.

Using this result, a generalization to any n2 with m2 = 1 and c2 = n2−1 can easily be made.
The result of this generalization gives a closed form expression as indicated in the following
lemma.

Lemma 2: For a 2D array of storage devices with only one constraint that m2 = 1, the closed
form expression for sk is of the form

sk =
min{⌊k/n2⌋,c1}∑

j=0

(
n1

j

)
coe f

((
(1+x)n2 −xn2

)n1 , xk−n2 j
)

1y≤n1+c2 j (k) (3.33)

PROOF: Proof of this lemma is pretty straightforward using the previous arguments of the
example where c2 = 1 and n2 = 2. �

The closed form expressions for sk without the constraint of lemma 2 becomes more com-
plicated. This is in fact the same interesting combinatorial problem, mentioned earlier. Al-
though many studies have been conducted regarding ball and bins argument in the past to
be used to calculate such quantities, with the specific decoding principle we assume in this
framework (iterative both in horizontal and vertical directions), there appears to be no solu-
tion for the general case published yet.

18

3.4.4 XOR-BASED ERASURE CODES

For an arbitrary erasure code – possibly non-MDS protected array of devices, the compu-
tation of sk is challenging and is a strong function of the code’s graphical construction. Even
without the consideration of coded symbol allocation methodology, identification of code
fault tolerance might be quite complex to compute. For example a methodology is presented
for a linear code (an XOR-based code) constructed using a systematic binary generator ma-
trix in [18] used for erasure correction. The same algorithm turns out to be applicable to
non-systematic codes as well. The claims of that paper are based on the decodability of the
code, i.e., the study assumes an optimal decoder. In fact, such a fault tolerance profile is a
function of the encoding and decoding algorithms that the code is used with.

For a complete characterization of the fault tolerance of an XOR-based erasure code, ev-
ery set of erasure patterns must be enumerated. Unfortunately, there are exponentially many
such erasure patterns to enumerate. Instead of finding all erasure patterns that lead to de-
coder failure, minimal erasures are found to characterize the fault tolerance of the erasure
code. A minimal erasure is a set of erasures that leads to irrecoverable data loss and in which
every erasure is both necessary and sufficient for this to be so. Furthermore, an enumeration
of all minimal erasures are termed as minimal erasures list (MEL). The MEL characterizes
completely the fault tolerance of an erasure code while having relatively small size relative to
all erasure patterns causing a data loss. An algorithm3 is presented in [18] for efficiently de-
termining the MEL of a linear XOR-based erasure code defined by a binary generator matrix.
Given the MEL of an (n,k) linear XOR-based code, the minimum erasure vector (MEV) is of
size n −k in which i th entry counts the number of minimum erasure patterns of weight i for
1 ≤ i ≤ n −k. It is easy to realize that MEV can be instrumental for the computation of sk .

Example 2: Let us consider the following binary generator matrix for a (8,4) systematic
XOR-based linear code,

G =

1 0 0 0 1 0 0 1
0 1 0 0 1 1 1 1
0 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1

Using the ME algorithm, we can compute the MEV = {0,0,4,5}. From this, we can see that

s3 =
(8

3

)−4 = 52 and through simple enumeration s4 =
(8

4

)−25 = 45 and sk = 0 for all k ≥ 5.

4 MTTDL FOR THE GENERALIZED MARKOV MODEL

In this section, we will give the exact as well as approximate expressions for the MTTDL of
the most general Markov model introduced in the previous section. As we mentioned before,
for large values of c, m and large volumes of storage arrays make the conventional compu-
tations useless. Closed form expressions are golden in that sense to predict future reliability
estimates for long and large size of storage arrays as well as gigantic arrays of data coded by
irregular modern coding techniques.

3A Matlab implementation of this algorithm can be found at http://www.suaybarslan.com/mea.txt

19

4.1 EFFICIENT COMPUTATION OF MTTDL

Following our previous construction, we have the transform domain Kolomogorov equa-
tions put into a coefficient matrix A as shown below.

A =

s +λ0 +γ0 −µ0 −µ1 . . . −µc−1 0
−λ0 s +λ1 +µ0 +γ1 0 . . . 0 0

0 −λ1 s +λ2 +µ1 +γ2 . . . 0 0
0 0 −λ2 . . . 0 0
...

...
. . . 0 0

0 0 . . . s +λc−1 +µc−2 +γc−1 0 0
0 0 . . . −λc−1 s +λc +µc−1 0

−γ0 −γ1 . . . −γc−1 −λc s

As can be seen, the inversion of A might be quite challenging using symbolic software

toolboxes if the size of the matrix is large. Instead, neat closed form expressions are prefered
using the special structure of the coefficient matrix. Let us start by stating the key result of this
section without proof. For a given number of redundant c units/devices and x = 0,1, . . . ,c, let
us define the following key rate vector with the corresponding entries,

Λ(c)
x ,

λ0

λ1

λ2
...

λc−1

λc

+V(c)

x

γ0

µ0 +γ1

µ1 +γ2
...

µc−2 +γc−1

µc−1

where

V(c)
x =

[
0x 0x×c+1−x

0c+1−x×x Ic+1−x

]
and Ic+1−x and 0x are identity and all-zero matrices, respectively. Let us assume Λc

x (j) to de-
note the (j +1)-th entry of the vector Λ(c)

x for 0 ≤ j ≤ c. Then, we have the following transform
domain expressions evaluated at s = 0,

P∗
m+c−x (0) = 1

ϕc (0)

c∏
j=0
j ̸=x

Λc
x (j) (4.1)

where the denominator can be computed recursively by

ϕt (0) =
t∏

i=0
λi + (µt−1 +λt)

[
ϕt−1(0)−

t−1∏
i=0

λi +γt−1

(
t−2∏
i=0

(γi +λi)+ξt

)]
(4.2)

for 1 ≤ t ≤ c with the initial condition ϕ0(0) = λ0. Here, we can show that ξ1 = ξ2 = 0 and
ξ3 = γ0µ0. The exact expressions for ξ{t>3} get more complicated for large t . However, we

20

realize that ξss are relatively small compared to the rest of the expression given for ϕt (0).
Thus, a good approximation is

ϕt (0) ≈
t∏

i=0
λi + (µt−1 +λt)

[
ϕt−1(0)−

t−1∏
i=0

λi +γt−1

(
t−2∏
i=0

(γi +λi)

)]
(4.3)

Using the above arguments, we can find a closed form expression for MT T DLc expressed as
follows,

MT T DLc =
c∑

x=0
P∗

m+c−x (0) = 1

ϕc (0)

c∑
x=0

c∏
j=0
j ̸=x

Λc
x (j) (4.4)

The equation (4.4) will become approximate (in fact an overestimator) if we use equa-
tion (4.3) to approximate ϕc (0). For example, we executed the actual computation and the
approximation for λ = 1/200K , µ = 1/24, m = 8, η = 10−3, c = {1,2,3,4,5} and r = {1,2,3} the
error due to approximation is observed to be less than 10−6. We project to find tight bounds
on the evolution of ξt and predict the maximum error that can be inserted into our compu-
tations. For a special case, ξt can be expressed in a closed form as stated in the following
lemma.

Lemma 3: For t ≥ 4 and x ≤ c − 2, if multiple of MDS protected arrays or a XOR-based
erasure coded storage array can tolerate any x or less device failures, we haveγ0 = 0, . . . ,γx−2 = 0
and therefore

ξt

{
= γt−3µt−3

∏t−4
i=0 λi if t ≤ x +2

> γt−3µt−3
∏t−4

i=0 λi Otherwise.
(4.5)

PROOF: Proof of this lemma will be provided with when we establish the the evolution of
ξt as a function of failure and repair rates of the underlying Markovian process. �

Note that this result implies that if evey combination of c −2 or more device failures are
tolerable given the coding algorithm and allocation policy, ξt has a simple closed form and
thus exact expression can be calculated for ϕc (0) given by the recursive relation for t = 1, . . . ,c

ϕt (0) =
t∏

i=0
λi + (µt−1 +λt)

[
ϕt−1(0)−

t−1∏
i=0

λi +γt−1

(
t−2∏
i=0

(γi +λi)+γt−3µt−3

t−4∏
i=0

λi

)]
(4.6)

and the MTTDL expression become exact. Otherwise, our computations shall generate an
upper bound for the actual MTTDL number (see why this is?).

Beauty of these type of closed form expressions is that, one can deduce the reliability
of large set of erasure coded arrays. For example, we can easily compute that 125 of RAID6
arrays with m = 8 data devices (A total of 1PB user data stored on 1250 1T B disk devices) has
a durability number of 3. This shows that parallel functioning conventional RAID schemes
for data protection is quite unreliable as the scale of the stored data expands to PB ranges. If
we reduce m = 8 to m = 7, allowing a total of 875T B user data storage in the same storage
system increases the durability number to 6.

21

Number of failed symbols/blocks 0 1 2 3 4 5 6

Generic MDS Code
Recoverability (%) 100 100 100 100 100 100 100
Avg. read overhead 1.0 1.61 2.22 2.83 3.44 4.06 4.67

Basic Pyramid Code (BPC)
Recoverability (%) 100 100 100 100 100 94.12 59.32
Avg. read overhead 1.0 1.28 1.56 1.99 2.59 3.29 3.83

Generalized Pyramid Code (GPC)
Recoverability (%) 100 100 100 100 100 94.19 76.44
Avg. read overhead 1.0 1.28 1.56 1.99 2.59 3.29 4.12

GPC w/o global symbols
Recoverability (%) 100 100 100 100 97.94 88.57 65.63
Avg. read overhead 1.0 1.28 1.56 1.87 2.32 2.93 3.85

Table 4.1: A generic (18,12) MDS code and few Pyramid codes with the associated recoverability/efficieny char-
acteristics as given in [19]

4.2 GENERALIZED MODEL APPLIED TO PYRAMID CODES

An interesting case study would be to apply the generalized Markov model of the previ-
ous section to one of the modern erasure codes such as Pyramid Codes of Microsoft Azure
Storage [19]. Pyramid codes are designed to improve the recovery performance for small-
scale device failures and have been implemented in archival storage [20]. Pyramid codes are
constructed from standard MDS codes by constructing newer parity symbols from already
existing parities in order to trade-off the recoverability, coding overhead and the average read
overhead, which are important parameters to optimize for a storage application. Let us use
a (16,12) MDS code as the basis for (18,12) set of pyramid codes given in table 4.1. These
recoverability and read overhead values are computed and presented in [19]. First, we notice
that recoverability values divided by 100 gives us qi values for each one of the pyramid codes.
The metric, average read overhead, represents the average number of extra device reads as
an overhead in order to access each data block. Let us consider an example of one block
failure in the (18,12) MDS code to show how this metric is computed. If the failure is a re-
dundant block (6/18 chance), then the data blocks can be accessed directly, so the average
read overhead is 1. Otherwise, the failure shall be a data block (12/18 chance), then the read
overhead is twelve for the failed data block and one for the rest of the eleven data blocks.
Hence, the average read overhead is (12+11)/12. Altogether, the average read overhead is
1×6/18+ (12+11)/12×12/18 ≈ 1.61.

In fact, we can find the average read overhead for a generic (n,k) MDS code when we have
j failures using the following generalized expression4

Φ j =
j∑

i=0

(i k +k − i)
(n−k

j−i

)(k
i

)
k
(n

j

) (4.7)

Although the average overhead is not the only metric effecting the repair process, for
simplicity we assume repair rates to be inversely proportional to that metric. Let us define

µ j , δµ ln((j +1)Φ j+1) (4.8)

4This expression can easily be proved by Induction and thus the proof is omitted for space.

22

Failure/Nominal Repair rates λ= 1
200K λ= 1

500K λ= 1
1.2M

Generic MDS Code
MTTDL (hour s) 2.2e+15 6.4e+17 1.3e+20
Durability (ni nes) 11 13 15

Basic Pyramid Code (BPC)
MTTDL (hour s) 1.3e+17 5.2e+18 1.7e+20
Durability (ni nes) 13 14 16

Generalized Pyramid Code (GPC)
MTTDL (hour s) 1.32e+17 5.26e+18 1.76e+20
Durability (ni nes) 13 14 16

GPC w/o global symbols
MTTDL (hour s) 1.83e+14 3e+15 4.1e+16
Durability (ni nes) 10 11 12

Table 4.2: MTTDL for various erasure codes.

where µ is the nominal rate of the repair per device and δ is a constant used to model the rel-
ative bandwidth constraint (with respect to an MDS code, for an MDS code it is normalized
to δ = 1) to reflect on the repair rates based on average read overhead metric. This formu-
lation assumes an inverse exponential relationship between the nominal repair rate and the
average read overhead. More field data is needed to confirm such a relationship.

Let χi be the average read overhead using one of the pyramid codes when i devices fail.
A closed form expression for χi for a given pyramid code with any desired level of hierarchy
is not derived in the original paper and is an interesting open problem. We shall use the
computed values of χi in [19] for our MTTDL computation. Using the generalized Markov
model of the previous section, let us further assume a homogenous repair strategy is used

in the system i.e., µ j = µ j

ln((j+1)χ j+1)) . Some results are shown in table 4.2 using a nominal

repair rate µ = 1/168 (1 week mean repair time), η = 10−3 and δ = 20. We observe that basic
and generalized pyramid codes provide better durability numbers thanks to their efficient
repair mechanisms. As λ gets close to zero, the frequency of repairs go down and hence the
advantage of pyramid codes diminish. This can be observed with the MTTDL results given
for λ = 1/1.2M . Another interesting observation is that given these computation parameter
settings, global symbols are quite crucial for pyramid codes for maintaining a desired level of
durability.

5 AVAILABILITY

One of the other important metrics of Reliability is availability, defined as the fraction
of time the system is able to provide access to the data through some redundancy scheme.
Availability deals more with temporary inaccessibility when enough number of devices are
unable to respond for the reconstruction of the data. The lifetime of a device is made up of
periods of availability and unavailability. Device uptime means the time while the device is
operational/online whereas the downtime of the device refers to the period in which the de-
vice is unresponsive/offline. When the device is offline, the data it contains is temporarily
unavailable and does not participate in the system unless it becomes online again. Devices
can become unavailable for a variety of reasons. For example, a storage device, node or net-
working switch can be overloaded; the operating system may crash or restart; the controller

23

online dead

l
12

offline

l
13

l
21

Figure 5.1: Markov chain for availability of a device/node.

may experience a hardware error; or the whole cluster of storage devices could be brought
down for maintenance. The vast majority of such unavailability events are transient and do
not result in permanent data loss [21].

One of the simplest definitions for availability can be given by the ratio of the expected
uptime divided by the sum of the expected up and down times, i.e.,

p A , Euptime

Edowntime+Euptime
(5.1)

If we assume uptimes and downtimes to be exponentially distributed, the underlying
random process becomes a Markovian, the state diagram of which can be shown as in Fig.
5.1. Let us say the mean uptime and downtime of a device are given by tup and tdown . Device
availability is given by p A = tup /(tup + tdown). Furthermore if the MTTF (1/λ) 5 of the device
is sufficiently large with respect to mean uptime and down times (λtup > λtdown ≫ 1), we
can show that [22], the transition rates of the continuous Markov model are

λ12 =
p A −λtup

tup p A
, λ13 = λ

p A
, λ21 = 1

tdown
. (5.2)

Note that if the device never goes offline, i.e., p A = 1 or tdown = 0, we have λ13 =λ= 1/tup .
Moreover, using the result of Lemma 1, we can conclude that the probability of a transition
from state online to the state dead is given by

p13 = λ13

λ12 +λ13
= λtup

p A
=λ(tup + tdown) (5.3)

which will be useful for next section’s discussion.

5.1 AVAILABILITY WITH TIMEOUTS

Although the state diagram is clear, the system cannot distinguish between a data/parity
device that is dead, and one that is merely offline. In both cases, the device is unresponsive
and there is no way of knowing whether it is going to be back online again. This detection
problem leads to an uncertainty about when to initiate the repair process. One of the mecha-
nisms to decide when to trigger a repair is to wait some period of time (called the timeout) for

5Here we implicitly assumed that device lifetime is exponentially distributed. In fact it can be shown that this is
the case if λtdown ≪ 1 [22].

24

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

C
u
*log

10
(unavailability time (secs))

P
ro

b
a
b
ili

ty
 o

f
E

ve
n
ts

Binomial CDF (p=0.5,n=15)
Actual data [15] (Google, Inc.)

Figure 5.2: Cumulative distribution function of the duration of node unavailability periods
versus the binomial fit.

the offline/dead replica to return to the online state. If the device returns online before the
timeout occurs, no repair is necessary; otherwise, the system assumes that it is dead, and ini-
tiates a repair process. Choosing a timeout period depends on how aggressively the system
wants to repair. The timeout period must be optimized for a given system to prevent from
inefficient use of system resources (for example unnecessary repairs).

The following discussion is given in [22] and will be restated here as it provides us useful
information about the actual repair process with timeouts. They introduced the system pa-
rameter α such that the timeout period shall be given by αtdown . The parameter α allows the
system to trade off how aggressively it responds to the potential loss of a data/parity versus
how many unnecessary repair initiations are made.

Let Yα denote the time that passes between the data/parity generation, and leave of the
online state without return i.e., either the instant of irrecoverable error or a period of time
exceeding the timeout. From the arguments of [22], we have the following lemma.

Lemma 4 [22]: The expected value of the random variable Yα is given by

EYα =
(1−p13)(1−e−α)

[
tup + tdown

(
1− αe−α

1−e−α

)]
p13 + (1−p13)e−α

+ tup (5.4)

PROOF: Proof of this lemma is given in [22]. �
A general practice of choosing an appropriate α can be given by solving the following

25

equation given λ, tup and tdown

λ(1−p13)(1−e−α)
[

tup + tdown

(
1− αe−α

1−e−α

)]
p13 + (1−p13)e−α

= 1+λ(1−α)tdown −p13 (5.5)

where we can notice that solving this nonlinear equation is nothing but finding the point
that satisfies EYα+αtdown = 1/λ i.e., expected time to timeout intersects with the linear line
y = 1/λ. This in turn means the repair process is initiated and hopefully generates exactly
one new replica at every device lifetime. The same study also presents results regarding the
insertion of memory to the overall repair process. Apparently, taking into account which
devices or nodes are subject to repair, and when they return to online state, unnecessary
redundancy can be eliminated to save the system resources. Interestingly though, when α

is chosen meticulously it is shown that with-memory repair is not significantly better than
without-memory repair.

5.2 CASE STUDY: GOOGLE UNAVAILABILITY DATA

The data gathered from tens of Google storage cells, each with 1000 to 7000 storage nodes,
over a one year period [21] suggests that less than 10% of unavailability events last longer
than 15 minutes. Let us express the unavailability event duration in units of seconds, and use
a mapping of the duration metric using Cu × log10(“unavailability event duration"), where Cu

is an appropriate constant. This change appropriately allows us to fit a binomial CDF to the
real data as shown in Fig. 5.2. The binomial distribution has parameters p = 0.5 and n = 15
to match the data with Cu = 3.7. Although such is given for node unavailability in [21], we
expect similar trends with device/disk unavailabilities.

Using the binomial distribution approximation based on the Google’s data, tdown , the
mean downtime can be found to be around 0.03 hours. It is also reported in [21] that they
typically wait 15 minutes (0.25 hours) before commencing recovery of data on unavailable
nodes. This implies α= 8.3. We can either set an AFR i.e., using an exponential time distribu-
tion, λ or the uptime tup . It is usually more reasonable to measure tup and through solving
the equation (5.5), λ can be calculated. With this value and the estimated repair rates, MTTDL
computations can be performed as previously discussed.

From Google’s paper, it is convenient to assume an AFR value of %4 (also reported to
be more realistic observed in many data centers and field measurements [21]) and calculate
the tup as the standard uptime measurements are not reported in the paper. Using these as-
sumptions, we solve the equation (5.5) for tup to be 218,089 hours. This implies λ13 = 0.99584
which is close to one. Ofcourse, unavailability of devices can dramatically vary depending on
the environment and correlation factor between other functional system components. True
values shall change our calculations but definitely not the methodology presented here.

6 ADVANCED MODELING

In our previous considerations, the set of extensions and Markov analysis associated with
these models can be argued to capture a simplistic view of an actual storage system, partic-

26

ularly while the size and the scale of such systems are ever growing. Although, the previous
discussions are quite improved versions of the available analytical methods using real data
(this makes them great machineries for back-of-the-envelope comparisons), they can still be
criticized due to the underlying model assumptions such as constant failure and repair rates.
Unfortunately though, the inclusion of time dependence into reliability models increases
complexity and can prohibit analytic reliability estimates. In addition, we have observed
that extending the canonical model to multi-disk fault-tolerant systems leads to issues in
modeling rebuild due to memoryless property of underlying exponential failure/repair time
distribution.

6.1 INCORPORATING SECTOR ERRORS

Previous models given for incorporating hard errors into the Markov model suffers from
representing accurately the latent sector errors which are found to be more frequent than un-
recoverable hard bit read errors [23]. In the literature, there have been two ways to model the
latent sector failure/scrubs. One is to treat them as disk failures or model them as a separate
random processes. Here we present the latter approach which is based on regular scrubbing
to remedy the latent sector errors. Given a fixed scrub period for a given sector, denoted as
TS , load on a given sector, l , probability of a sector error due to a write operation, Pw and the
ratio of write requests in the total system load, rw , the probability of an unrecoverable error
on a given sector at an arbitrary time t (not time dependent) is given by [24]

PS =
(

1− 1−e−lTS

lTS

)
Pw rw (6.1)

In the same study, a time-dependent probability is derived to be of the form

PS(t) =
(
1−e−l (t mod TS)

)
Pe (6.2)

where Pe is the single sector failure probability. Unfortunately, incorporating the load term
l , into such a calculation to come up with a proper sector failure model remains an open
problem. PS can be used to calculate the likelihood of a latent sector failure on a disk. If a
disk has S sectors, then the probability that one or more latent sector errors are present at
an arbitrary point in time is PLSE = 1− (1−PS)S . Given the fact that sector errors are more
dominant type of failures relative to unrecoverable bit errors, PLSE can be used in place of
PUC ER given in the Markov model that incorporates the hard error in the MTTDL calculations
(See equation 3.22). Although such a change shall create more accurate estimates, it does not
account for the critically exposed region of the rebuild process or the number of sector errors
[10].

6.2 SIMULATORS

With all the extensions of the canonical Markov model, the remaining critical problem
with previously discussed Markov models is the time dependent failure and repair rates.

27

In addition, they are argued not to model well multi-disk fault tolerance, irregular fault-
tolerance and sector errors. Due to these reasons, the most effective way remaining is simula-
tion. Standard simulation tools handles time dependence pretty effectively, however obtain-
ing a result in a reasonable amount of time is non-trivial (mostly due to rare events). Standard
simulation tools use two methodologies to evaluate the reliability of an erasure coded system
[25]. One of them is based on the estimation of unreliability function U (t) and the other is
based on MTTDL. Let TF be the random variable characterizing the failure time, Ti be the
stopping time of the i th iteration and 1TF≤t (t) be the indicator function, using a law of large
numbers argument we have

Û (t) = 1

N

N∑
i=1

1TF≤t (t) (6.3)

MT T DL = 1

N

N∑
i=1

Ti (6.4)

where the simulation is assumed to carry out N consecutive iterations. As previously noted,
aforementioned simulation methods are inefficient when evaluating highly fault tolerant sys-
tems. The major drawback to this type of simulation is the amount of time required to get an
accurate result when the probability of failure is extremely low. The main approach to cir-
cumvent this situation is to increase the frequency of rare events after some threshold num-
ber of failures occur in the standard simulation tool. This technique is generally called Im-
portance Sampling in literature [26]. Main objective is to increase the probability of seeing
data loss event while keeping the variance (system) reduced after the threshold is reached.

There have been many more advanced simulation-based reliability estimators, renowned
by their high fidelity book keeping (tracking which disk and sector failures have occurred, and
efficiently determining if the failures constitute a data loss event) features. One of them is
High-Fidelity Reliability (HFR) Simulator. For more information and the validation routines,
the reader is referred to the reference [10].

28

REFERENCES

[1] M.Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient scheme for tolerating
double disk failures in RAID architectures," IEEE Trans. Comput., 44(2):192–202, 1995.

[2] A. G. Tomislav, G. S. Kleiman, J. Leong, S. Sankar, P. Corbett and B. English, “Row-diagonal
parity for double disk failure correction," In USENIX Conference on File and Storage Tech-
nologies, 2004.

[3] C. Huang and L. Xu. “STAR: an effcient coding scheme for correcting triple storage node
failures," In FAST’05: Proceedings of the 4th conference on USENIX Conference on File and
Storage Technologies, Berkeley, CA, USA, 2005.

[4] J. S. Plank and C. Huang, “Tutorial: Erasure Coding for Storage Applications," Slides pre-
sented at FAST–2013: 11th Usenix Conference on File and Storage Technologies, Feb, 2013.

[5] M. Rausand and A. Høyland, “System Reliability Theory", John Wiley & Sons, Inc., Hobo-
ken, New Jersey, 2nd ed., 2004.

[6] W. Burkhard and J. Menon, “Disk Array Storage System Reliability", In proceedings of the
international Symposium on Fault-tolerant computing, pp. 432–441, 1993.

[7] W. A. Burkhard and P. D. Stojadinovic, “Storage-Efficient Reliable Files", In Proceedings of
the Winter 1992 USENIX Conference, pp. 69–77, San Francisco, January 1992.

[8] K. M. Greenan, J. S. Plank, and J. J. Wylie, “Mean time to meaningless: MTTDL, Markov
models, and storage system reliability," in Proc. of the USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage), pp. 1–5., 2010.

[9] V. Venkatesan, I. Iliadis, “A general reliability model for data storage systems," In Proc. 9th
IntŠl Conference on Quantitative Evaluation of Systems (QEST 2012), pp. 209–219, 2012.

[10] K. Greenan, “Reliability and power-effciency in erasure-coded storage systems," PhD
thesis, University of California, Santa Cruz, Dec. 2009.

[11] J. L. Hafner and KK Rao, “Notes on reliability models for non-MDS erasure codes," Tech-
nical Report RJ–10391, IBM, Oct. 2006.

[12] J.-F. Pâris, T. Schwarz, S.J., A. Amer and D. D. E. Long, “Highly Reliable Two-Dimensional
RAID Arrays for Archival Storage," Proc. 31st Int. Performance of Computers and Commu-
nication Conf., pp. 324–331, Dec. 2012.

[13] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn. CRUSH: “Controlled, scalable, de-
centralized placement of replicated data," In Proceedings of the 2006 ACM/IEEE Confer-
ence on Supercomputing (SC’06), Tampa, FL, Nov. 2006.

[14] J. J. Wylie and R. Swaminathan, “Determining Fault Tolerance of XOR-based Erasure
Codes Efficiently," DSN-2007: IEEE International Conference on Dependable Systems and
Networks, Edinburgh, Scotland, Jun., 2007.

29

[15] J.-F. Pâris, A. Amer, and T. J. E. Schwarz, “Low-Redundancy Two Dimensional RAID Ar-
rays," Proc. 2012 Int. Conf. on Computing, Networking and Communications, Data Stor-
age Technology and Applications Symp., pp. 507–511, Jan.–Feb. 2012.

[16] S. S. Arslan, “Redundancy and Aging of Efficient Multidimensional MDS Parity-
Protected Distributed Storage Systems," IEEE Trans. Device and Materials Reliability, Vol.
14, No. 1, pp. 275–285, Mar. 2014.

[17] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, “Network
coding for distributed storage systems," IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–
4551, Sep. 2010.

[18] J. J. Wylie and R. Swaminathan, "Determining Fault Tolerance of XOR-based Erasure
Codes Efficiently," DSN–2007: The International Conference on Dependable Systems and
Networks, IEEE, Edinburgh, Scotland, June, 2007.

[19] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to trade space for access
efficiency in reliable data storage systems," ACM Transactions on Storage, 9(1):1–28, Mar.
2013.

[20] A. Wildani, T. J. E. Schwarz, E. L. Miller, and D. D. Long, “Protecting against rare
event failures in archival systems," In Proceedings of the 17th Annual Meeting of the
IEEE/ACM International Symposium on Modelling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS’09), pp. 1–11, London, UK, Sept. 2009.

[21] Daniel Ford, Franis Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh Truong,
Luiz Barroso, Carrie Grimes, and Sean Quinlna, “Availability in Globally Distributed Stor-
age Systems," In Proceedings of the 9th Symposium on Operating Systems Design and Im-
plementation, (OSDI’10), Vancouver, Canada, Oct. 2010.

[22] S. Ramabhadran, and J. Pasquale, “Analysis of the durability of replicated distributed
storage systems," UCSD Technical Report CS2007–0900, 2007.

[23] L.N. Bairavasudaram, “Characteristics, impact, and tolerance of partial disk failures.
Diss," The University of Wisconsin, USA. Madison: ProQuest, UMI Dissertations Pub-
lishing, 2008.

[24] I. Iliadis, R. Haas, X.-Y. Hu, and E. Eleftheriou, “Disk scrubbing versus intra-disk redun-
dancy for high-reliability raid storage systems," In SIGMETRICS’08: Proceedings of the
2008 ACM SIGMETRICS international conference on Measurement and modeling of com-
puter systems, pp. 241–252, New York, NY, USA, 2008.

[25] V.F. Nicola, P. Shahabuddin, and M.K. Nakayama, “Techniques for fast simulation of
models of highly dependable systems," IEEE Transactions on Reliability, 50(3):246–264,
Sept. 2001.

[26] Marvin K. Nakayama and Perwez Shahabuddin, “Quick simulation methods for estimat-
ing the unreliability of regenerative models of large, highly reliable systems," Probab. Eng.
Inf. Sci., 18(3):339–368, 2004

30

