
CLASS NOTES 5: INTRODUCTION TO CODING THEORY

Low Density Parity Check Codes

Suayb S. Arslan

February 12, 2015

1 INTRODUCTION

After the birth of information theory in 1948, the concept of information as well as the
minimum conditions and requirements for a reliable transmission over noisy channels have
been understood very well. Asymptotically (with large block lengths) randomly generated
channel codes are shown to achieve the capacity assuming an optimal decoding strategy.
However, in the original proof of capacity, the ways and means of efficient design of codes to
achieve capacity is absent. In other words, the proof given for the channel capacity was non-
constructive. That however later become the main motivation for the research community
to find practical codes with efficient encoding and decoding algorithms that shall achieve or
come close to the channel capacity.

Low Density Parity Check (LDPC) codes are a subclass of linear codes that can achieve
capacity with very large blocklengths. Our previous construction of linear codes were formu-
lated based on algebraic principles and their parity check matrices were often high density.
Therefore they are a subclass of High Density Parity Check (HDPC) codes. As we already men-
tioned in previous notes that the main complexity for such class of codes are due to decoding
architectures that are ideally to achieve Maximum Likelihood Decoding (MLD) performance
i.e., optimal performance. However the MLD requirement leads to very complicated decod-
ing procedures that makes the practical implementation infeasible. Main attraction of LDPC
codes is that the sparse parity check matrices allow us to use suboptimal low complexity de-
coding algorithms (at most polynomial time) that can achieve near optimal performance.
Furthermore, they are found to be suited for implementations that make heavy use of paral-
lelism such as the use of Graphical Processing Unit (GPU) on multiple cores.

1

2 GRAPH TERMINOLOGY

We consider an undirected graph G(V ,E) that has vertices contained in the set V and
edges in the set E . Two vertices u, v ∈ V are called adjacent or neighbors if there is an edge
e = {u, v} connecting u and v . The degree of a vertex v , denoted as deg (v), is the number of
edges that are connected to v . For any G(V ,E), it is pretty straightforward to show that sum of
all degrees of vertices must be an even number. A cycle with c vertices v1, v2, . . . , vc , denoted
by Cc , is a graph with edges of the form {v1, v2}, {v2, v3}, . . . , {vc−1, vc }, {vc , v1}. The length of
the cycle is defined to be the number of edges one must travel to complete the cycle. An
undirected graph G(V ,E) may have multiple cycles in it. The minimum length cycle is called
the girth of the graph G .

A graph G(V ,E) is bipartite if V can be partitioned into two nonempty disjoint subsets V1

and V2 such that every edge connects a vertex in V1 and a vertex in V2. If there is an edge from
every vertex in V1 to every vertex in V2, G(V ,E) is further called complete bipartite graph. The
girth of an undirected bipartite graph can only be an even number (do you see why?).

3 LDPC CODES

LDPC codes are a subclass of linear block codes that can be obtained from sparse parity
check matrices. They are originally invented by Gallager [cite]. For an (n,k) LDPC code, the
associated parity check matrix has r = n − k rows and n columns. The rows represent the
parity-check equations whereas the columns represent whether the particular location of a
codeword is used in the parity check equation or not. If the row weight or the column weights
of an LDPC parity check matrix is a fixed number, the code is called regular. An irregular
LDPC code relaxes such a constraint on the design of the parity check matrix. A ρ-regular
LDPC code is the one where the column weight for each column of the parity check matrix is
exactly wc . This implies that the total number of non-zero entries of the parity check matrix is
nwc . The average row weight is therefore given by wr = nwc /r . A (wc , wr)-regular LDPC code
has a parity check matrix whose columns have weight wc and rows have weight wr . Usually
wc and wr are small such that the total number of non-zero entries of the parity check matrix
is small. More general definition of sparsity can be given as follows. We finally note that the
rate of this code is 1−wc /wr .

Definition 1: Let A be r ×n parity check matrix defined over GF (2). A sequence of such
A matrices are called c-sparse if the product (or the size of A) “r n" tends to infinity and the
number of non-zero elements in A < c max(r,n) .

For example, a parity check matrix for a (wc , wr)-regular LDPC code is (wc +1)−sparse.
Let us give an example parity check matrix as follows:

H =

0 1 1 0 1 0
0 0 0 1 1 1
1 0 1 0 0 1
1 1 0 1 0 0

4×6

Based on our definition of sparsity for parity check matrices, this example constitutes a
3-sparse H but not 2-sparse H.

2

Figure 3.1: A Tanner graph that represents a parity check matrix.

Exercise 1: What is the maximum value that c can take on if we consider only the valid
class of LDPC parity check matrices?

A parity check matrix of an LDPC code has a corresponding bipartite graph (a graphical
representation – also called Tanner graph) on which the parity check equations are defined.
For this example, we can generate the corresponding bipartite graph as shown in Fig. 3.1.
Check equations are represented by check nodes or symbols whereas the codeword symbols
are represented by variable nodes in the bipartite graph. Note that the entry (i, j) of H is 1 if
and only if the i–th check node (ci) is connected to the j–th variable or codeword node (v j) in
the graph. All vectors c of length six is a valid codeword if HcT = 0.

When the parity check matrices are designed for constructing high-performance LDPC
codes, the bipartite graphs representing the code play an important role. As will be dis-
cussed later, the special properties of these graph representations will guarantee good dis-
tance properties and therefore a promising decoding performance. One of the feature of such
graphs is their variable and check node degree distributions denoted as Λ(x) = ∑dv

d=1Λd xd

and Φ(x) =∑dc

d=1Φd xd where Λd and Φd are the probability of having degree-d variable and
check nodes, respectively. For example, a (wc , wr)-regular LDPC code has Λ(x) = xwr and
Φ(x) = xwc i.e., check nodes have degree wr and variable nodes have degree wc with proba-
bility one.

4 ENCODING

The main attraction of LDPC codes is their sparse check matrices which allows very effi-
cient decoding algorithms to perform as well as complex optimal decoders do. We shall see
that in the next section. However, encoding complexity of an LDPC code may not be low, as
LDPC codes with sparse parity check matrices in general do not need to have sparse gener-
ator matrices. Particularly, for large n, the encoding complexity overburden the advantages
and benefits offered by low-complexity decoders. In this section, instead of talking about
the standard way1 of obtaining generator matrix from the parity check matrix and large scale

1Remember that traditional method is to get H into a systematic form using row and column permutations
and additions to make the right part of H an identity matrix, from which we can obtain the generator matrix.

3

matrix multiplications, we consider low-complexity alternatives.
One of the straightforward ways for efficient encoding is called “back substitution". In

that method, parities are computed recursively and the over all complexity turns out to be
linear in n. One way to allow backward substitution is to design the parity check matrix (de-
terministic or probabilistic) such that it is in lower triangular form as shown in Fig. 4.1. One
example is array LDPC codes [3]. In fact, array codes [4] are designed to correct burst errors
and their parity check matrix does not show sparseness unless they are defined over GF (2).
Binary array codes can therefore be considered as LDPC codes that can be constructed using
deterministic methods. A binary array LDPC code is defined by three parameters: a prime
number p and two integers ρ and γ. Its dimensions is ρp ×γp and given by

Har r ay =

I I I . . . I I
I α α2 . . . αγ−2 αγ−1

I α2 α4 . . . α2(γ−2) α2(γ−1)

I α3 α6 . . . α3(γ−2) α3(γ−1)

...
...

...
. . .

...
...

I αρ−1 α2(ρ−1) . . . α(ρ−1)(γ−2) α(ρ−1)(γ−1)

where I is the p ×p identity matrix and α is a p ×p column-wise cyclic shift of I either right
or left i.e., for p = 3 we have

α=
 0 1 0

0 0 1
1 0 0

 or α=
 0 0 1

1 0 0
0 1 0

Exercise 2: Show that ρ and γ provide the column and row weight of the parity check

matrix, respectively.
The parity check matrix goes through two additional operations to be put in lower trian-

gular form as shown in Fig. 4.1. The steps can be summarized as follows:

1. The i -th row of Har r ay is shifted right by (i −1) blocks (p bits) for i = 1, . . . , j .

2. The lower triangular elements of the ρp×ρp subblock of shifted Har r ay is set to nullity
to obtain

Har r ay =

I I I . . . I I . . . I
0 I α . . . αρ−2 αρ−1 . . . αγ−2

0 0 I . . . α2(ρ−3) α2(ρ−2) . . . α2(γ−3)

...
...

...
. . .

...
...

...
...

I 0 . . . 0 I α(ρ−1) . . . α(ρ−1)(γ−ρ)

Of course, such modifications to the parity check matrix may degrade the decoding per-

formance heavily. However for high rate constructions with ρ = 3,4, the performance degra-
dation is shown to be minor. Although attractive in its own right, such a parity check matrix

4

construction will degrade the LDPC code performance in general compared to random and
unconstrained parity check constructions having the same code parameters.

For a given H without being in any special form, bringing it to lower triangular form can
be achieved using elementary row operations. However, this is no less complex than the
standard/traditional method of encoding. For more efficient encoding, the sparseness of
H must be preserved as much as possible while triangularization will have to be utilized to
allow backward substitution. That is the idea behind [5], as we will describe here shortly.
The efficient encoding procedure starts with performing row and column permutations-only
step. In that step, the parity check matrix is brought to an approximate lower triangular form
as shown in Fig. 4.1. Since all of the operations performed in that step is permutations, the
parity check matrix stays sparse.

H =
[

Ar−g×n−r Br−g×g Tr−g×r−g

Cg×n−r Dg×g Eg×r−g

]
where Tr−g×r−g is in lower triangular form where as the rest of the matrices are sparse. The
second step of this encoding procedure is the multiplication of H with the following matrix
from left,

O =
[

Ir−g 0
−Eg×r−g T−1

r−g×r−g Ig

]
Performing this operation, we get

OH =
[

Ar−g×n−r Br−g×g Tr−g×r−g

−Eg×r−g T−1
r−g×r−g Ar−g×n−r +Cg×n−r −Eg×r−g T−1

r−g×r−g Br−g×g +Dg×g 0

]
Let x = [s p1 p2] be a valid LDPC codeword where s is the systematic part, p1 and p2

together denote the parity part of the codeword. Therefore, we end up with the following
equations,

AsT +BpT
1 +TpT

2 = 0 (4.1)

(−ET−1A+C)sT + (−ET−1B+D)pT
1 = 0 (4.2)

However, computational complexity of such a method is qubic in the codeword length n. Since the generator
matrix is not in general sparse, the matrix multiplication i.e., encoding is quadratic in n.

0
0

A B
T

C D E

n

n - r r

r

n - r r - g

n

g

r - g

g

Figure 4.1: Parity check matrices in lower and approximately lower triangular forms [5].

5

If (−ET−1B+D) is singular, by doing some column permutations, it can easily be made
non-singular. Thus, the first set of parities can be computed as follows,

pT
1 = (−ET−1B+D)−1(ET−1A−C)sT (4.3)

As the matrix T has lower triangular form, we can obtain the second set of parity symbols
from backward substitution as follows,

p2(l) =
n−r∑
j=1

Al , j s j +
g∑

j=1
Bl , j p1(j)+

l−1∑
j=1

Tl , j p2(j) (4.4)

This method is shown to perform almost linear in n (if g = 0 the complexity is exactly linear).
For large H, bringing an arbitrary sparse matrix in to a form shown in Fig. 4.1 is not straight
forward. A greedy algorithm is presented in [5] for an efficient solution to that operation.

5 DECODING

For large parity check matrices, matrix inversions and multiplications are not plausible
decoding options. In this section we will explore decoding algorithms that make use of the
sparse nature of H. Interestingly, we will see that such low complexity decoding algorithms
lead to extremely good performance i.e., near optimal performance.

5.1 MATHEMATICAL FUNDAMENTALS

We begin this section with the following definition.
Definition 1: Consider the following polynomial of order n with roots a0 = {a0, . . . , an−1}

(x −a0)(x −a1)(x −a2) . . . (x −an−1) =
n∑

k=0
s(n,k;a0)xk (5.1)

where s(n,k;a0) are the coefficients of the polynomial obtained after executing the multiplica-
tions and arranging the terms in ascending order of powers of x. We define s(n,k;a0) to be the
generalized stirling numbers of the first kind.

Generalized stirling numbers become handy in many problems of combinatorics and
part of our discussion of LDPC decoding. More applicable version of such number is known
as signless generalized stirling numbers of the first kind, and is given by

|s(n,k,a0)| = s(n,k,−a0) = (−1)n−k s(n,k,a0). (5.2)

Lemma 1: Consider a sequence of independent n Bernoulli trials and assume that the
probability of success at the i th trial is pi = 1/(1+ ai−1), with ai−1 ≥ 0, i = 1,2, . . . ,n. Let us
assume Xn is the number of successes up to the nth trial. The probability that Xn = k, i.e.
Pr (Xn = k) for k = 0,1, . . . ,n is given by

Pr (Xn = k) = |s(n,k,a0)|
(1+a0)(1+a1) . . . (1+an−1)

,k = 0,1, . . . ,n (5.3)

6

where |s(n,k,a0)| is called the signless stirling number of the first kind and satisfies the trian-
gular recurrence relation given by

|s(n,k,a0)| = |s(n −1,k −1,a0)|+an−1|s(n −1,k,a0)| (5.4)

with s(0,0,a0) = 1 and s(n,k,a0) = 0 for k > n.
PROOF: The proof can be found in [2].
Here one can note due to triangular recurrence relation, the probabilities Pr (Xi = k) can

efficiently be computed. Next, we explore the sum of the probabilities Pr (Xn = 2s) for s =
0,1, . . . ,⌊n/2⌋ i.e., the probability that Xn is even. Interestingly, the result is quite clean to be
expressed in closed form.

Let us consider the probability generating function

G(x) =
n∑

k=0
Pr (Xi = k)xk =

n∑
k=0

|s(n,k,a0)|xk

(1+a0)(1+a1) . . . (1+an−1)
(5.5)

By definition of |s(n,k,a0)|, we have

G(x) =
n∏

i=1

x +ai−1

1+ai−1
=

n∏
i=1

(1−pi +pi x) (5.6)

This probability generating function will be useful for the next lemma.
Lemma 2: Consider a sequence of independent n Bernoulli trials and assume that the

probability of success at the i th trial is pi for i = 1,2, . . . ,n. Let us assume Xn is the number of
successes up to the nth trial. The probability that Xn is an even number is given by

1

2
+ 1

2

n∏
i=1

(1−2pi) (5.7)

PROOF: The following proof is due to Gallager. Consider the probability generator poly-
nomial G(x) and its variant given by Lemma 1,

G(x) =
n∏

i=1
(1−pi −pi x) (5.8)

Once can notice that G(x) is identical to G(x) except that odd powers of x are negative.
Therefore, adding these two polynomials will yield only the even powers of x but doubled
coefficients. If we divide the sum by 2 and letting x = 1 will give what is desired. In other
words,

G(1)+G(1)

2
=

∏n
i=1(1−pi +pi)+∏n

i=1(1−pi −pi)

2
= 1+∏n

i=1(1−2pi)

2
(5.9)

We can give an alternative proof for this lemma as follows. Let u(j) be the probability that
X j is even for j ≤ n. Note also that 1−u(j) is the probability that X (j) is odd. We would like

7

to find u(n). We can express u(j)in terms of u(j −1) as follows,

u(j) = u(j −1)(1−p j)+ (1−u(j −1))p j (5.10)

= u(j −1)(1−2p j)+p j (5.11)

= u(j −1)(1−2p j)+p j −1/2+1/2 (5.12)

u(j)−1/2 = u(j −1)(1−2p j)− 1

2
(1−2p j) (5.13)

= (
u(j −1)−1/2

)
(1−2p j) (5.14)

with the initial condition u(0) = 1. This is due to the fact that if we have zero bernoulli trials
its guaranteed to have even (zero) number of successes. If we let u′(j) = u(j)−1/2, we have a
simple recurrence

u′(j) = u′(j −1)(1−2p j) (5.15)

with u′(0) = 1/2. Using the initial condition it is not hard to see the general expression

u′(n) = u′(0)
n∏

i=1
(1−2pi) = 1

2

n∏
i=1

(1−2pi) (5.16)

and therefore we obtain

u(n) = 1

2
+ 1

2

n∏
i=1

(1−2pi) (5.17)

as desired. �

5.2 DECODING LDPC CODES

The algorithm, which is used to decode LDPC codes, was discovered independently sev-
eral times in the past and therefore comes under different names. The most common ones are
“the belief propagation algorithm" , “the message passing algorithm" and “the sum-product
algorithm". We start with some definitions.

5.2.1 NOTATION AND DEFINITIONS

For simplicity we constrain our consideration to (n,k) LDPC block codes over GF (2). We
list the following definitions for convenience that will come handy in our later discussions for
LDPC decoding.

• We assume m = (m0,m1, . . . ,mn−1) is the message symbols and r = (r0,r1, . . . ,rn−1) is
the received word (senseword).

• We denote the set of variable nodes that are connected to j -th check node as V j and set
of check nodes that are connected to i -th variable node as Ci .

• We define λi = Pr {vi = 1|r} to be the conditional probability that vi = 1 given the value
of r.

8

• Let q (l)
i j be the message sent from variable node vi to check node c j at iteration “l".

In this context, q (l)
i j (0) denotes the amount of belief ri is zero and q (l)

i j (1) denotes the
amount of belief ri is one.

• Let g (l)
j i be the message sent from check node c j to variable node vi at iteration “l".

In this context, g (l)
j i (0) denotes the amount of belief ri is zero and g (l)

j i (1) denotes the
amount of belief ri is one.

In order for the belief propagation to work, following rule is respected for relative message
passings to be independent.

Definition 2: (Extrinsic Information Principle) Message sent from a node i along an edge e
cannot depend on any message perviously received on edge e.

Definition 3: Hyperbolic tangent function (tanh) and its inverse (tanh−1) can be expressed
in the following forms,

tanh(z) = sinh(z)

cosh(z)
= ez −e−z

ez +e−z = e2z −1

e2z +1
(5.18)

tanh−1(z) = 1

2
ln

(
1+ z

1− z

)
for z ∈R, z < 1. (5.19)

5.2.2 SOFT DECODING

We initialize q (0)
i j (1) = λi and q (0)

i j (0) = 1−λi such that
∑2

k=1 q (0)
i j (k) = 1. The rest of the

decoding operation consists of two-step procedure; message passing from variable nodes to
check nodes and from check nodes to variable nodes.

1. The check nodes compute their messages according to following

g (l)
j i (0) = 1

2
+ 1

2

∏
i ′∈V j \i

(1−2q (l−1)
i ′ j (1)) and g (l)

j i (1) = 1− g (l)
j i (0). (5.20)

where we used the result of Lemma 2 that the probability of having even number of 1’s
among the variable nodes that are connected to check node c j except vi .

2. Next the variable nodes update the message they provide for check nodes using the
following equations,

q (l)
i j (0) = A(l)

i j (1−λi)
∏

j ′∈Ci \ j
g (l−1)

j ′i (0) (5.21)

q (l)
i j (1) = A(l)

i j λi
∏

j ′∈Ci \ j
g (l−1)

j ′i (1) (5.22)

where A(l)
i j is chosen such that

∑2
k=1 q (l)

i j (k) = 1.

9

During the execution of the second step, variable nodes update their estimated value of
ri . this step no different than the second step except it includes the information coming from
j -th check node c j as well. This is given by

λ̂(l)
i (0) = A(l)

i (1−λi)
∏

j ′∈Ci

g (l)
j ′i (0) (5.23)

λ̂(l)
i (1) = A(l)

i λi
∏

j ′∈Ci

g (l)
j ′i (1) (5.24)

from which the decision rule can simple be stated as,

m̂(l)
i =

{
1, if λ̂(l)

i (0) < λ̂(l)
i (1).

0, otherwise.
(5.25)

The decoder iteratively goes back to step 1 and increments l → l + 1 and recomputes
the variables until one of the two conditions hold: Either the vector (m(l)

0 ,m(l)
1 , . . . ,m(l)

n−1) sat-
isfies all the parity check equations or a predetermined maximum number of iterations is
reached. As can be seen, for large block lengths the product computation might be costly to
implement. In addition, multiplication of tiny numbers or very large numbers will cause nu-
merical instabilities which one needs to avoid in any software or hardware implementation.
Likelihoods or logarithmic likelihood avoids instability problems by mapping [−1,1] interval
to [−∞,+∞] and transforms all multiplications to additions.

Let us define the logarithmic likelihood ratio,

Ω(0)
i = ln

(
Pr {vi = 0|r}

Pr {vi = 1|r}

)
= ln

(
1−λi

λi

)
(5.26)

From this relationship, we can deduce λi = 1/(1+ eΛ
(0)
i j). We use the same initilization val-

ues q (0)
i j (1) = λi and q (0)

i j (0) = 1−λi such that
∑2

k=1 q (0)
i j (k) = 1. Now we update the steps of

decoding algorithm as follows,

1. The check nodes compute their messages according to following

Λ(l)
j i = ln

 g (l)
j i (0)

g (l)
j i (1)

 = ln

1+∏
i ′∈V j \i (1−2q (l−1)

i ′ j (1))

1−∏
i ′∈V j \i (1−2q (l−1)

i ′ j (1))

 (5.27)

= ln

1+∏
i ′∈V j \i tanh(

Λ(l−1)
i ′ j

2)

1−∏
i ′∈V j \i tanh(

Λ(l−1)
i ′ j

2)

 (5.28)

= 2tanh−1

 ∏
i ′∈V j \i

tanh

Λ(l−1)
i ′ j

2

 (5.29)

10

where we used Definition 2 and the fact that,

Λ(l)
i j = ln

 q (l)
i j (0)

q (l)
i j (1)

= ln

1−q (l)
i j (1)

q (l)
i j (1)

⇒ q (l)
i j (1) = 1/(1+eΛ

(l)
i j) (5.30)

⇒ 1−2q (l)
i j (1) = eΛ

(l)
i j −1

eΛ
(l)
i j +1

= tanh

Λ(l)
i j

2

 (5.31)

2. Next the variable nodes update the message they provide for check nodes using the
rule,

Λ(l)
i j = ln

 q (l)
i j (0)

q (l)
i j (1)

 = ln

1−λi

λi

∏
j ′∈Ci \ j

g (l−1)
j ′i (0)

g (l−1)
j ′i (1)

 (5.32)

= Ω(0)
i +

∑
j ′∈Ci \ j

Λ(l−1)
j ′i (5.33)

The decision rule will be based on the metricΩ(l)
i computed at the l-th iteration as follows,

Ω(l)
i = ln

(
λ̂(l)

i (0)

λ̂(l)
i (1)

)
=Ω(0)

i +
∑

j ′∈Ci

Λ(l)
j ′i (5.34)

according to following rule,

m̂(l)
i =

{
1, if Ω(l)

i < 0.

0, otherwise.
(5.35)

We note that tanh(.) and tanh−1(.) operations might be costly from an implementation
point of view. Therefore further simplifications are devised for the real implemented BP al-
gorithm in many applications. For example in one of them, check node’s computations are
done according to the following rule (instead of step 1),

Λ(l)
j i ≈ min

i ′∈V j \i
({Λ(l−1)

i ′ j })

(∏
i ′∈V j \i

sg n
(
Λ(l−1)

i ′ j

))
(5.36)

which is based on the approximation ln(cosh(x)) ≈ |x|− ln(2) for x >> 1. Some performance
loss may be incurred due to this approximation yet it is easy to justify that using such an
approximation the check node rule computation complexity can dramatically be reduced.

5.2.3 ERASURE AND HARD ERROR DECODING

ERASURE DECODING: BP algorithm greatly simplifies when the channel is a binary erasure
channel i.e., the channel does not introduce errors but erases packets or bits [7]. We assume
ri ∈ {−1,0,+1} where 0 denotes an erasure. The decoding algorithm executes the following
steps in order,

11

• We initialize m̂(0)
i = ri and l = 0.

• We set Λ(l)
i j = m̂(l)

i and l = l +1.

• The check nodes compute their messages according to following Λ(l)
j i = ∏

i ′∈V j \i Λ
(l−1)
i ′ j .

This means that if all incoming messages are nonzero, either +1 or −1 is sent to a vari-
able node that checks the parity equation, otherwise a zero is sent.

• If for variable node s, if any Λ(l)
j s coming from the check nodes in Cs is nonzero, we set

m̂(l)
i =Λ(l)

j s and i -th variable node is said to be known. Otherwise, we do not decode.

• If m̂(l)
i ̸= 0 for all i , stop. Otherwise, go back to step 2.

Since it is erasure channel we are dealing with, once the value of the message bit is deter-
mined in any iteration of the BP algorithm, its value need not to be updated anymore mainly
because only reliable (no errors are assumed in an erasure correcting mode) information is
communicated between nodes.

Finally we note an interesting use of BP algorithm for erasure decoding. If we assume the
parity check matrix can be split into two matrices H = [Hm |Hp] such that Hp is in low trian-
gular form, then BP algorithm can be used to do the encoding (same operation of back sub-
stitution introduced earlier). This can be done by assuming the values of the first k variable
nodes to have the k values of the message symbols. The parities are assumed to be erasures.
Using the check equations, the BP algorithm finds the parity values with probability one due
to the low triangular structure at most k iterations. Advantages of such a scheme could be

• Linear time complexity in k.

• The encoder and decoder share the same hardware and hence save space.

HARD ERROR DECODING: One of the most popular channel model is known as the Binary
Symmetric Channel (BSC) in which one of the two possible input bits are sent through a chan-
nel and one of the two possible bits are received with an error probability ϵ0. The channel is
therefore to introduce only errors but not erasures i.e., ri ∈ {−1,+1} . The decoding algorithm
executes the following steps in order2 for this channel,

• We initialize m̂(0)
i = ri and l = 0.

• We set Λ(l)
i j = m̂(l)

i and then l = l +1.

• The check nodes compute their messages according to following Λ(l)
j i = ∏

i ′∈V j \i Λ
(l−1)
i ′ j .

This means that either +1 or −1 is sent to a variable node to check the parity equation.

2This algorithm is the most basic decoding scheme primarily introduced in [1], and named as Gallager decoding
algorithm A. Later, slightly different improvements have been made to it.

12

• For variable node s, we consider the set {Λ(l)
j1s ,Λ(l)

j2s , . . . ,Λ(l)
j|Cs |s

,m̂(l)
i } where { j1, j2, . . . , j|Cs |}

are the indexes of the check nodes in Cs . We set

m̂(l)
i = Majority

(
Λ(l)

j1s ,Λ(l)
j2s , . . . ,Λ(l)

j|Cs |s
,m̂(l)

s

)
(5.37)

=
ÌÌÌÊ2+

∑|Cs |
t=1Λ

(l)
jt s +m̂(l)

i

|Cs |+1

ÍÍÍË
even

−1 (5.38)

where ⌊.⌋even rounds down to the nearest even integer. Note that the value of m̂(l)
i is

flipped if ⌈|Cs |/2⌉+1 or more elements of {Λ(l)
j1s ,Λ(l)

j2s , . . . ,Λ(l)
j|Cs |s

} disagree with m̂(l)
s .

• If m̂(l)
i = m̂(l−1)

i for all i , stop. Otherwise, go back to step 2.

Exercise 3: Show that the equation (5.38) is equivalent to Majority logic given in equation
(5.37).

6 ANALYSIS OF LDPC CODES: DENSITY EVOLUTION (DE)

6.1 DE FOR BINARY ERASURE CHANNEL

Let us start with LDPC codes over binary erasure channels (BEC) as it is easier to illustrate
the concept of “Density Evolution" over such channels. The idea behind density evolution
is the predict the ultimate error/erasure correction capability of an LDPC code. Since the
extrinsic messages (various realizations of many random variables) are passed from check
nodes to message nodes and back to check nodes, it may be possible that message originated
from a node is received after a few rounds of the algorithm because the code may contain
cycles in it. However in this case, the “independent message" transfer will be violated. In the
method of Density Evolution, messages are assumed to be independent (which is approxi-
mately true for large girth, long block length LDPC codes. If the messages are independent
i.e., the Tanner graph representation of the LDPC code contains no cycles of some length
2 f , then any node can be the root of a tree with l branches consisting of variable and check
nodes. Under such assumptions, the propagation of erasure probabilities (density) are of our
major concern as the algorithm evolve though iterations.

By a slight abuse of the notation for ri ∈ {0,1} where a zero denotes an erasure (or an
unknown) as before and one denotes either {+1} or {−1}, indicating that the value of a variable
node is known. We observe that the output of a check node j (intended for variable node i) is
only known if all variable nodes i ′ ∈V j \i are nonzero. This means that a check node performs
the AN D logic operation. Similarly, the output of a variable node i is known if at least one
check node j ′ ∈ Ci \ j is nonzero. This means that a variable node performs the OR logic
operation.

We generate a tree by first choosing an edge from the graph. Let the probability of a
randomly chosen edge is connected to degree-d variable node and a degree-d check node be
λd and ρd , respectively. Therefore, we can talk about edge perspective degree distributions

13

root

A local subgraph
root

Figure 6.1: A subgraph of the bipartite representation of an LDPC code asymptotically ap-
proaches to a tree, which validates the assumption under which the density evo-
lution formulas have been derived.

defined as

λ(x) =
dv∑

d=1
λd xd−1 and ρ(x) =

dc∑
d=1

ρd xd−1 (6.1)

Exercise 4: Show that the relationship between edge-perspective and node-perspective
degree distributions is given by

λ(x) = Λ′(x)

Λ′(1)
ρ(x) = Φ′(x)

Φ′(1)
(6.2)

where Λ′(x) and Φ′(x) are formal derivatives of Λ(x) and Φ(x).
Exercise 5: Show that the rate of the LDPC code R can be computed by

R = 1−
∫ 1

0 ρ(x)d x∫ 1
0 λ(x)d x

(6.3)

Let P (l)
v and P (l)

c be the probability of density of erasures at the variable and check nodes
at the l-th iteration of the BP algorithm. For any LDPC code with edge perspective degree
distributions λ(x) and ρ(x) used over a BEC characterized with the erasure probability ϵ0, the
following recursive relations can be established using the AN D −OR argument,

P (l)
c = 1−

dc∑
i=1

ρi

(
1−P (l)

v

)i−1 = 1−ρ(1−P (l)
v) (6.4)

P (l+1)
v = ϵ0

dv∑
i=1

λi

(
P (l)

c

)i−1 = ϵ0λ(P (l)
c) = ϵ0λ(1−ρ(1−P (l)

v)) (6.5)

From these recursions, it is apparent that for l →∞ error free decoding is possible if and
only if P (l+1)

v < P (l)
v . This yields the condition that

ϵ0λ(1−ρ(1−x)) < x for x ∈ (0,ϵ0] (6.6)

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

10
2

x

x/
(1

−(
1−

x)
w

r−1
)w

c−1

(3,6)
(3,4)
(3,8)

Minimum

Figure 6.2: Supremum of can be found by minimizing x
λ(1−ρ(1−x)) . Shown are there examples

for three different regular LDPC codes.

So the interesting question is to ask the supremum of all the set of ϵ0 values that satisfy
the above inequality. This is the maximal erasure probability of the channel below which
error-free decoding shall be possible. Let us denote this value ϵ∗0 and it is given by

ϵ∗0 = sup{ϵ0 : ϵ0λ(1−ρ(1−x)) < x,∀x, x ∈ (0,ϵ0]} (6.7)

In coding community, ϵ∗0 is known as the decoding threshold. It is the maximal fraction
of erasures an LDPC code with given edge degree distributions can correct using the BP algo-
rithm. However, there is an equivalent way of expressing ϵ∗0 as follows,

ϵ∗0 = inf

{
x

λ(1−ρ(1−x))
,∀x, x ∈ (0,1)

}
(6.8)

For a regular code, this optimization can be solved for a closed form expression. The
details can be found in [6]. Let us consider three sample (3,8), (3,6) and (3,4) regular LDPC
codes. Note that these codes have code rates (1−wc /wr) 5/8, 1/2 and 1/4, respectively. The x
values that minimize x

λ(1−ρ(1−x)) are ≈ 0.1844, ≈ 0.2606 and ≈ 0.4417, respectively. Thus, if we
evaluate it at these optimal values, we can get ϵ∗0 = 0.3193 , ϵ∗0 = 0.4294 and ϵ∗0 = 0.6359. These
minimums are plotted in Fig. 6.2 for reference. From our previous notes, we recall that the

15

capacity of a BEC is 1−R where R is the rate of the optimal code (erasure rate of the channel).
Therefore, we note that (3,8) regular LDPC is off the capacity by 0.375−0.3193 = 0.0557, (3,6)
regular LDPC is off the capacity by 0.5− 0.4294 = 0.0706 and (3,4) regular LDPC is off the
capacity by 0.75−0.6359 = 0.1141. As we can see, higher LDPC codes have better potential
for achieving the capacity as predicted by our previous general treatment of linear codes.
Furthermore, it is shown that irregular LDPC codes have better decoding thresholds than do
the regular LDPC codes.

If the erasure probability ϵ0 of the BEC is greater than the threshold ϵ∗0 i.e., ϵ0 > ϵ∗0 , then
the BP decoding will not succeed and there will always remain a fixed fraction of erasures
that cannot be corrected [8]. Since this fraction is a function of ϵ0, we start by defining the
following for ϵ0 > ϵ∗0

x(ϵ0) = sup{x : ϵ0λ(1−ρ(1− x)) = x,∀x, x ∈ (0,ϵ0]} (6.9)

which is the emitted erasure probability from variable nodes when the iterations terminate.
Corresponding messages by the check nodes is 1−ρ(1−x(ϵ0)). For a variable node to be era-
sure, all of the incoming information as well as the current value is an erasure. This happens
with probability ϵ0Λ(1−ρ(1− x(ϵ0))). Therefore, the asymptotical performance is given in a
parametric form given by(

ϵ0,ϵ0Λ(1−ρ(1−x(ϵ0)))
)

for ϵ0 ≥ ϵ∗0 (6.10)

6.2 DE FOR BINARY SYMMETRIC CHANNEL

Using similar notation to the previous subsection, let P (l)
v be the error probability at the

variable node at iteration l . Note that we have the initialization P (0)
v = ϵ0, i.e., the cross over

probability of the BSC. According to the hard decision decoding algorithm introduced in the
previous section, a check symbol computes the wrong check symbol ∈ {+1,−1} if an only if an
odd number of errors are passed from its neighbors. Conditioning on the check node having
a node degree d , this probability (using the result of Lemma 2) is given by

P (l)
c|d =

1− (1−2P (l)
v |d)d−1

2
(6.11)

where |d denotes the conditioning operation. If we average over the degree distribution, it is
not hard to see that this probability becomes,

P (l)
c = 1−ρ(1−2P (l)

v)

2
(6.12)

Consider the variable node i conditioned on having degree d (assuming all incoming
check nodes to carry independent information, which is in fact the main basis of DE). Assume
that this node has wrong value at the l th iteration, the probability that it flips its value (i.e.,
changes it to the correct value) is given by (i.e., ⌈d/2⌉ or less check node information agree
with the variable node value)

P (l)
v

⌈d/2⌉∑
t=0

(
d

t

)(
1−ρ(1−2P (l)

v)

2

)t (
1+ρ(1−2P (l)

v)

2

)d−t

= P (l)
v ψ(t ,d − t) (6.13)

16

Similarly assume that this node has the correct value at the l th iteration, the probability
it flips its value (i.e., changes it to the wrong value) is given by (i.e., ⌈d/2⌉ or less check node
information agree with the variable node value)

(1−P (l)
v)

⌈d/2⌉∑
t=0

(
d

t

)(
1+ρ(1−2P (l)

v)

2

)t (
1−ρ(1−2P (l)

v)

2

)d−t

= (1−P (l)
v)ψ(d − t , t) (6.14)

Since the events are assumed to be independent of eachother, we have conditional prob-
ability in the next iteration expressed as,

P (l+1)
v |d = P (l)

v −P (l)
v ψ(t ,d − t)+ (1−P (l)

v)ψ(d − t , t) (6.15)

The unconditional expression will be given by averaging over the distribution λ(x), i.e.,

P (l+1)
v = P (l)

v −
dv∑

d=1
λd

(
P (l)

v ψ(t ,d − t)− (1−P (l)
v)ψ(d − t , t)

)
(6.16)

7 GRAPH REPRESENTATIONS AND DECODING PERFORMANCE

The properties of the Tanner graph that describes an LDPC code determines the perfor-
mance of the code. A cycle in a Tanner graph refers to a finite set of connected edges, the edge
starts and ends at the same node, and it satisfies the condition that no node (except the initial
and final node) appears more than once. The length of a cycle is simply the number of edges
of the cycle. The girth of a Tanner graph is the length of the shortest cycle in the graph. Girths
in the Tanner graphs of LDPC codes may prevent the belief propagation decoding algorithm
from converging. Further, cycles, especially short cycles, degrade the performance of LDPC
decoders, because they affect the independence of the extrinsic information exchanged in
the iterative decoding.

To be continued...

17

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes," IRE Transactions on Information
Theory, vol. 8, no. 1, pp. 21–28, 1962

[2] C. A. Charalambides, “Combinatorial methods in Discrete distributions," John Willet &
Sons, Inc. 2005.

[3] E. Eleftheriou and S. Olcer, “Low-density parity–check codes for digital subscriber
lines," inProc. IEEE Int. Conf. Communications (ICC 2002), vol. 3, 2002, pp. 1752–1757.

[4] M. Blaum, P. Farrell, and H. van Tilborg, “Array codes" in Handbook of Coding Theory,
V. S. Pless and W. C. Huffman Eds., Elsevier 1998.

[5] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-check codes,"
IEEE Trans. Inform. Theory, vol. 47, pp. 638–656, Feb. 2000.

[6] C. Schlegel and L. Perez, Trellis and Turbo Coding, IEEE/Wiley, Piscataway, NJ, USA,
2004.

[7] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann, “Practical
loss-resilient codes," in Proc. 29th Annu. ACM Symp. Theory of Computing, 1997, pp.
150–159.

[8] C. Di, D. Proietti, E. Telatar, T. Richardson, and R. Urbanke, “Finite length analysis of
low-density parity-check codes," IEEE Trans. on Information Theory, pp. 1570– 1579,
June 2002.

18

